Answer:
The moment of inertia of the motor is 0.0823 Newton-meter-square seconds.
Explanation:
From Newton's Laws of Motion and Principle of Motion of D'Alembert, the net torque of a system ([tex]\tau[/tex]), measured in Newton-meters, is:
[tex]\tau = I\cdot \alpha[/tex] (1)
Where:
[tex]I[/tex] - Moment of inertia, measured in Newton-meter-square seconds.
[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.
If motor have an uniform acceleration, then we can calculate acceleration by this formula:
[tex]\alpha = \frac{\omega - \omega_{o}}{t}[/tex] (2)
Where:
[tex]\omega_{o}[/tex] - Initial angular speed, measured in radians per second.
[tex]\omega[/tex] - Final angular speed, measured in radians per second.
[tex]t[/tex] - Time, measured in seconds.
If we know that [tex]\tau = 3\,N\cdot m[/tex], [tex]\omega_{o} = 0\,\frac{rad}{s }[/tex], [tex]\omega = 145.875\,\frac{rad}{s}[/tex] and [tex]t = 4\,s[/tex], then the moment of inertia of the motor is:
[tex]\alpha = \frac{145.875\,\frac{rad}{s}-0\,\frac{rad}{s}}{4\,s}[/tex]
[tex]\alpha = 36.469\,\frac{rad}{s^{2}}[/tex]
[tex]I = \frac{\tau}{\alpha}[/tex]
[tex]I = \frac{3\,N\cdot m}{36.469\,\frac{rad}{s^{2}} }[/tex]
[tex]I = 0.0823\,N\cdot m\cdot s^{2}[/tex]
The moment of inertia of the motor is 0.0823 Newton-meter-square seconds.
A wave in which the movement of the wave is perpendicular to the movement of the wave traveling through the medium-compression wave (longitudinal wave)
True or false?
Answer:
I'm rusty sorry if I'm wrong but true?
An 80 N rightward force is applied to a 10 kg object to accelerate it to the right.
The object encounters a friction force of 50 N.
net force = 30 N
mass = 8.16 kg
acceleration = 3.68 m/s²
Further explanationGiven
80 N force applied
mass of object = 10 kg
Friction force = 50 N
Required
Net force
mass
acceleration
Solution
net forceNet force = force applied(to the right) - friction force(to the left)
Net force = 80 - 50 = 30 N
massGravitational force(downward) : F = mg
m = F : g
m = 80 : 9.8
m = 8.16 kg
accelerationa = F net / m
a = 30 / 8.16
a = 3.68 m/s²
A 0.75 kg golf ball is being launched from the ground. What is its potential energy
Explanation:
the question it's not complete as I don't know the height as the formula for potential energy is : PE = mgh
(m) - mass acceleration due to gravity
(g) - acceleration due to gravity (9.8 m/s2)
(h) - height