a) Use the Quotient Rule to find the derivative of the given function b) Find the derivative by dividing the expressions first y for #0 a) Use the Quotient Rule to find the derivative of the given function

Answers

Answer 1

The derivative of the function `y` with respect to x is: [tex]$$\frac{dy}{dx}=\frac{5x^2-67}{(x^2+3)^2}$$[/tex]

a) Use the Quotient Rule to find the derivative of the given function. For the given function `y`, we have to find its derivative using the quotient rule.

The quotient rule states that the derivative of a quotient of two functions is given by the formula:

[tex]$\frac{d}{dx}\frac{u}{v}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$[/tex] where [tex]$u$ and $v$[/tex] are the functions of [tex]$x$[/tex].

Given function `y` is: [tex]$$y = \frac{5x^3 + 2}{x^2 + 3}$$[/tex]

Applying the quotient rule on the given function `y` we get:$$y' = \frac{(x^2 + 3)\frac{d}{dx}(5x^3 + 2) - (5x^3 + 2)\frac{d}{dx}(x^2 + 3)}{(x^2 + 3)^2}$$$$\frac{dy}{dx}=\frac{(x^2 + 3)(15x^2)-(5x^3 + 2)(2x)}{(x^2 + 3)^2}=\frac{15x^4+45x^2-10x^4-4x}{(x^2 + 3)^2}$$$$\frac{dy}{dx}=\frac{5x(5x^2-2)}{(x^2+3)^2}$$

Therefore, the derivative of the function `y` with respect to x is:[tex]$$\frac{dy}{dx}=\frac{5x(5x^2-2)}{(x^2+3)^2}$$[/tex]

b) Find the derivative by dividing the expressions first y for #0To find the derivative of `y`, we divide the expressions first. Let's use long division for the same.

[tex]$$y=\frac{5x^3+2}{x^2+3}=5x-\frac{15x}{x^2+3}+\frac{41}{x^2+3}$$$$\frac{dy}{dx}=5+\frac{15x}{(x^2+3)^2}-\frac{82x}{(x^2+3)^2}=\frac{5x^2-67}{(x^2+3)^2}$$[/tex]

Therefore, the derivative of the function `y` with respect to x is:[tex]$$\frac{dy}{dx}=\frac{5x^2-67}{(x^2+3)^2}$$[/tex]

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11


Related Questions


please answer 4-7
Where is the function f(x) = +0 r=0 4. Discontinuous? • 5. Is this a removable discontinuity? . 6. Discuss where the function is continuous or where it is not. • 7. How is the notion of limit rela

Answers

The function f(x) = +0 r=0 4 is discontinuous at x = 0. It is not a removable discontinuity. The function is continuous everywhere except at x = 0.

The notion of limit is related to continuity, as it helps determine the behavior of a function as it approaches a particular value, and in this case, it indicates the discontinuity at x = 0.

The function f(x) = +0 r=0 4 can be written as:

f(x) = 0, for x < 0

f(x) = 4, for x ≥ 0

At x = 0, the function has a jump in its value, transitioning abruptly from 0 to 4. This makes the function discontinuous at x = 0.

A removable discontinuity occurs when there is a hole in the graph of the function that can be filled in by assigning a value to make it continuous. In this case, there is no such hole or missing point that can be filled, so the discontinuity at x = 0 is not removable.

The function is continuous everywhere else except at x = 0. It follows a continuous path for all values of x except at the specific point x = 0 where the jump occurs.

The notion of limit is closely related to the concept of continuity. The limit of a function at a particular point indicates its behavior as it approaches that point. In this case, the limit of the function as x approaches 0 from both sides would be different, highlighting the discontinuity at x = 0.

Learn more about discontinuity here:

https://brainly.com/question/28914808

#SPJ11

Which of these illustrates Rome's legacy in our modern world?
{A} Languages based on Greek are still spoken in former parts of the Roman Empire.
{B} The Orthodox Church has moved its center to the city of Rome.
{C} Many of the Romans' aqueducts and roads are still in use today.
{D} The clothes we wear today are based on Roman designs.

Answers

C) Many aqueducts and roads remain in our modern days.

y-9y=x+7 Is y = x + 6x - 5 a solution to the differential equation shown above? Select the correct answer below: Yes O No

Answers

To determine if the given equation y = x + 6x - 5 is a solution to the differential equation y - 9y = x + 7, we need to substitute the expression for y in the differential equation and check if it satisfies the equation.

Substituting y = x + 6x - 5 into the differential equation, we get:

(x + 6x - 5) - 9(x + 6x - 5) = x + 7

Simplifying the equation:

7x - 5 - 9(7x - 5) = x + 7

7x - 5 - 63x + 45 = x + 7

-56x + 40 = x + 7

-57x = -33

x = -33 / -57

x ≈ 0.579

However, we need to check if this value of x satisfies the original equation y = x + 6x - 5.

Substituting x ≈ 0.579 into y = x + 6x - 5:

y ≈ 0.579 + 6(0.579) - 5

y ≈ 0.579 + 3.474 - 5

y ≈ -1.947

Therefore, the solution (x, y) = (0.579, -1.947) does not satisfy the given differential equation y - 9y = x + 7. Thus, the correct answer is "No."

Learn about differential equation here:

https://brainly.com/question/25731911

#SPJ11

solve step by step with the formulas if any
dath 2205 Practice Final 2, Part 1 15. The function f(x) = 4x³ +9x² + 6x-5 has a point of inflection at 1 (A) r = 1 (B) = (C) x 3 (D) x = - (E) x=- and r = -1 12 12

Answers

To find the point(s) of inflection of the function f(x) = 4x³ + 9x² + 6x - 5, we need to find the x-coordinate(s) where the concavity of the function changes.

The concavity of a function can be determined by analyzing its second derivative. If the second derivative changes sign at a specific x-coordinate, it indicates a point of inflection.

Let's calculate the first and second derivatives of f(x) step by step:

First derivative of f(x):

f'(x) = 12x² + 18x + 6

Second derivative of f(x):

f''(x) = 24x + 18

Now, to find the point(s) of inflection, we need to solve the equation f''(x) = 0.

24x + 18 = 0

Solving for x:

24x = -18

x = -18/24

x = -3/4

Therefore, the point of inflection of the function f(x) = 4x³ + 9x² + 6x - 5 is at x = -3/4.

Learn more about concavity here;

https://brainly.com/question/29142394

#SPJ11  

help will mark brainliest

Answers

Answer:

Median = 70

Lower Quartile = 52

Upper Quartile = 76

Interquartile range = 24

Step-by-step explanation:

Since you've already correctly identified the minimum and maxiumum, we simply need to find the lower and upper quartiles, and the interquartile range.

Step 1:  Find the median:

The median lies in the middle of the data. Because there are 11 values in the data set, we know that there will be 5 values to the left and right of the median.  Also, the values are already in numerical order so we can find the median directly without having to rearrange the numbers.  

Thus, the median is 70.

Step 2:  Find the Lower Quartile (Q1):

To find the lower quartile, we find the middle number of the 5 values to the left of the median.  Out of 46, 48, 52, 62, and 70, 52 lies in the middle so its the lower quartile.

Step 3:  Find the Upper Quartile (Q3):

To find the upper quartile, we find the middle number of the 5 values to the right of the median.Out of 71, 74, 76, 76, and 78, 76 lies in the middle so its the upper quartile.

Step 4:  Find the interquartile range (IQR)

The interquartile range is the difference between the upper and lower quartile.76 - 52 = 24.  Thus, the interquartile range is 24.

A manufacture has been selling 1400 television sets a week at $450 each. A market survey indicates that for each $25 rebate offered to a buyer, the number of sets sold will increase by 250 per week. a. Find the demand function.
b. f the cost function is C(x) = 68000 + 150x, how should it set the size of
the rebate in order to maximize its profit.

Answers

a) the demand function is Q(P, R) = 1400 + 10R

b) the manufacturer should set the size of the rebate at $150 in order to maximize its profit.

a. To find the demand function, we need to determine how the quantity demanded (Q) changes with respect to the price (P) and the rebate offered (R).

Given that the initial price is $450 and the number of sets sold increases by 250 per week for each $25 rebate, we can express the demand function as follows:

Q(P, R) = 1400 + (250/25)R

Simplifying this equation, we have:

Q(P, R) = 1400 + 10R

Therefore, the demand function is Q(P, R) = 1400 + 10R.

b. To maximize profit, we need to consider both the revenue and cost functions. The revenue function is given by:

R(x) = P(x) * Q(x)

Given that the price function is P(x) = $450 - R, and the demand function is Q(x) = 1400 + 10R, we can rewrite the revenue function as follows:

R(x) = (450 - R) * (1400 + 10R)

Expanding and simplifying the equation:

R(x) = 630000 + 4400R - 1400R - 10R^2

R(x) = -10R^2 + 3000R + 630000

The cost function is given as C(x) = 68000 + 150x.

To maximize profit, we need to subtract the cost from the revenue:

Profit(x) = R(x) - C(x)

Profit(x) = -10R^2 + 3000R + 630000 - (68000 + 150x)

Simplifying further:

Profit(x) = -10R^2 + 3000R + 562000 - 150x

To find the rebate size that maximizes profit, we can take the derivative of the profit function with respect to R, set it equal to zero, and solve for R:

d(Profit(x))/dR = -20R + 3000 = 0

-20R = -3000

R = 150

Therefore, the manufacturer should set the size of the rebate at $150 in order to maximize its profit.

To learn more about cost function

https://brainly.com/question/25109150

#SPJ11

If the parent function is y = 2*, which is the function of the graph?

Answers

Answer:

2

Step-by-step explanation:

If the parent function is y = 2, then the function of the graph would also be y = 2.

The parent function represents the simplest form of a function and serves as a reference for transformations. In this case, the parent function y = 2 is a horizontal line parallel to the x-axis, passing through the y-coordinate 2. Any transformations applied to this parent function would alter its shape or position, but the function itself remains y = 2.

let H be the set of all polynomials of the form P(t)=a+bt^2 where a and b are in R and b>a. determine whether H is a vector space.if it is not a vector space determine which of the following properties it fails to satisfy. A: contains zero vector B:closed inder vector addition C: closed under multiplication by scalars A) His not a vector space; does not contain zero vector B) His not a vector space; not closed under multiplication by scalars and does not contain zero vector C) H is not a vector space; not closed under vector addition D) H is not a vector space; not closed under multiplication by scalars.

Answers

The set H of polynomials of the form P(t) = a + bt², where a and b are real numbers with b > a, is not a vector space. It fails to satisfy property C: it is not closed under vector addition.

In order for a set to be a vector space, it must satisfy several properties: containing a zero vector, being closed under vector addition, and being closed under multiplication by scalars. Let's examine each property for the set H:

A) Contains zero vector: The zero vector in this case would be the polynomial P(t) = 0 + 0t² = 0. However, this polynomial does not have the form a + bt² with b > a, as required by H. Therefore, H does not contain a zero vector.

B) Closed under vector addition: To check this property, we take two arbitrary polynomials P(t) = a + bt² and Q(t) = c + dt² from H and try to add them. The sum of these polynomials is (a + c) + (b + d)t². However, it is possible to choose values of a, b, c, and d such that (b + d) is less than (a + c), violating the condition b > a. Hence, H is not closed under vector addition.

C) Closed under multiplication by scalars: Multiplying a polynomial P(t) = a + bt² from H by a scalar k results in (ka) + (kb)t². Since a and b can be any real numbers, there are no restrictions on their values that would prevent the resulting polynomial from being in H. Therefore, H is closed under multiplication by scalars.

In conclusion, the set H fails to satisfy property C: it is not closed under vector addition. Therefore, H is not a vector space.

Learn more about addition here: https://brainly.com/question/29464370

#SPJ11

Evaluate ∫∫∫Bye−xydV where B is the box determined by 0≤x≤5.0≤y≤5.and 0≤z≤1. The value is =?

Answers

the integral ∫∫∫_B e^(-xy) dV does not have a definite value because it does not converge.

To evaluate the triple integral ∫∫∫_B e^(-xy) dV, where B is the box determined by 0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and 0 ≤ z ≤ 1, we need to integrate with respect to x, y, and z.

Let's break down the integral step by step:

∫∫∫_B e^(-xy) dV = ∫∫∫_B e^(-xy) dz dy dx

The limits of integration are as follows:

0 ≤ x ≤ 5

0 ≤ y ≤ 5

0 ≤ z ≤ 1

Integrating with respect to z:

∫∫∫_B e^(-xy) dz dy dx = ∫∫_[0,5]∫_[0,5] e^(-xy) [z]_[0,1] dy dx

Since z ranges from 0 to 1, we can evaluate the integral as follows:

∫∫∫_B e^(-xy) dz dy dx = ∫∫_[0,5]∫_[0,5] e^(-xy) [1 - 0] dy dx

Simplifying:

∫∫∫_B e^(-xy) dz dy dx = ∫∫_[0,5]∫_[0,5] e^(-xy) dy dx

Integrating with respect to y:

∫∫_[0,5]∫_[0,5] e^(-xy) dy dx = ∫_[0,5] ∫_[0,5] [-e^(-xy) / x]_[0,5] dx

∫_[0,5] ∫_[0,5] [-e^(-xy) / x]_[0,5] dx = ∫_[0,5] [-e^(-5y) / x + e^(-0) / x] dy

Simplifying:

∫_[0,5] [-e^(-5y) / x + 1 / x] dy = [-e^(-5y) / x + y / x]_[0,5]

Now, we substitute the limits:

[-e^(-5(5)) / x + 5 / x] - [-e^(-5(0)) / x + 0 / x]

Simplifying further:

[-e^(-25) / x + 5 / x] - [-1 / x + 0] = -e^(-25) / x + 5 / x + 1 / x

Now, integrate with respect to x:

∫_0^5 (-e^(-25) / x + 5 / x + 1 / x) dx = [-e^(-25) * ln(x) + 5 * ln(x) + ln(x)]_0^5

Evaluating at the limits:

[-e^(-25) * ln(5) + 5 * ln(5) + ln(5)] - [-e^(-25) * ln(0) + 5 * ln(0) + ln(0)]

However, ln(0) is undefined, so we cannot evaluate the integral as it stands. The function e^(-xy) approaches infinity as x and/or y approaches infinity or as x and/or y approaches negative infinity. Therefore, the integral does not converge to a finite value.

to know more about ranges visit:

brainly.com/question/20259728

#SPJ11

From 1995 through 2000, the rate of change in the number of cattle on farms C (in millions) in a certain country can be modeled by the equation shown below, where t is the year, with t = 0 corresponding to 1995. dc dt = - 0.69 - 0.132t2 + 0.0447et In 1997, the number of cattle was 96.8 million. (a) Find a model for the number of cattle from 1995 through 2000. C(t) = = (b) Use the model to predict the number of cattle in 2002. (Round your answer to 1 decimal place.) million cattle

Answers

a. A model for the number of cattle from 1995 through 2000 is C(t) = -0.69t - (0.132/3)t^3 + 0.0447e^t + 98.5323 - 0.0447e^2

b. The predicted number of cattle in 2002 is approximately 78.5 million cattle.

a. To find a model for the number of cattle from 1995 through 2000, we need to integrate the given rate of change equation with respect to t:

dc/dt = -0.69 - 0.132t^2 + 0.0447e^t

Integrating both sides gives:

∫ dc = ∫ (-0.69 - 0.132t^2 + 0.0447e^t) dt

Integrating, we have:

C(t) = -0.69t - (0.132/3)t^3 + 0.0447e^t + C

To find the value of the constant C, we use the given information that in 1997, the number of cattle was 96.8 million. Since t = 2 in 1997, we substitute these values into the model:

96.8 = -0.69(2) - (0.132/3)(2)^3 + 0.0447e^2 + C

96.8 = -1.38 - (0.132/3)(8) + 0.0447e^2 + C

96.8 = -1.38 - 0.352 + 0.0447e^2 + C

C = 96.8 + 1.38 + 0.352 - 0.0447e^2

C = 98.5323 - 0.0447e^2

Substituting this value of C back into the model, we have:

C(t) = -0.69t - (0.132/3)t^3 + 0.0447e^t + 98.5323 - 0.0447e^2

This is the model that gives the number of cattle from 1995 through 2000.

b. To predict the number of cattle in 2002 (t = 7), we substitute t = 7 into the model:

C(7) = -0.69(7) - (0.132/3)(7)^3 + 0.0447e^7 + 98.5323 - 0.0447e^2

C(7) = -4.83 - (0.132/3)(343) + 0.0447e^7 + 98.5323 - 0.0447e^2

C(7) = -4.83 - 15.212 + 0.0447e^7 + 98.5323 - 0.0447e^2

C(7) = 78.496 + 0.0447e^7 - 0.0447e^2

Therefore, the predicted number of cattle in 2002 is approximately 78.5 million cattle.

Learn more about model at https://brainly.com/question/28013612

#SPJ11

Find the derivative of the function by using the rules of differentiation. f(t) = 6+2 + VB + f'(t) Need Help? Read It 8. [-/2 Points] DETAILS TANAPCALC10 3.1.042. MY NC Find the slope and an equation

Answers

Answer:

The derivative of f(t) = 6t + 2 + VB is f'(t) = 6.

- The slope of the function is 6, indicating a constant rate of change.

- The equation of the function remains f(t) = 6t + 2 + VB.

Step-by-step explanation:

To find the derivative of the given function, we need to assume that "VB" represents a constant term, as it does not include any variable dependence. Thus, the function can be rewritten as:

f(t) = 6t + 2 + VB

To find the derivative, we apply the power rule of differentiation, which states that the derivative of a constant multiplied by a variable raised to the power of 1 is equal to the constant itself.

The derivative of the function f(t) = 6t + 2 + VB is:

f'(t) = 6

The derivative of a constant term is always zero since it does not involve any variable dependence. Therefore, the derivative of VB is zero.

Now, let's discuss the slope and equation. The derivative represents the slope of the function at any given point. In this case, the slope is a constant value of 6. This means that the function f(t) = 6t + 2 + VB has a constant slope of 6, indicating that it is a straight line with a constant rate of change.

The equation of the function f(t) = 6t + 2 + VB itself does not change after taking the derivative. It remains f(t) = 6t + 2 + VB.

Learn more about differentiation:https://brainly.com/question/954654

#SPJ11


II WILL GIVE GOOD RATE FOR GOOD ANSWER
: Question 2 Second Order Homogeneous Equation. Consider the differential equation & : x"(t) – 4x'(t) + 4x(t) = 0. (i) Find the solution of the differential equation E. (ii) Assume x(0) = 1 and x'(0

Answers

i. The general solution of the differential equation is given by:

[tex]x(t) = C_1e^{(2t)} + C_2te^{(2t)[/tex]

ii. The solution of the differential equation E: x"(t) - 4x'(t) + 4x(t) = 0 is x(t) = [tex]e^{(2t)[/tex].

What is homogeneous equation?

If f x, y is a homogeneous function of degree 0, then d y d x = f x, y is said to be a homogeneous differential equation. As opposed to this, the function f x, y is homogeneous and of degree n if and only if any non-zero constant, f x, y = n f x, y

To solve the given second-order linear homogeneous differential equation E: x"(t) - 4x'(t) + 4x(t) = 0, let's find the solution using the characteristic equation method:

(i) Finding the general solution of the differential equation:

Assume a solution of the form [tex]x(t) = e^{(rt)}[/tex], where r is a constant. Substituting this into the differential equation, we have:

[tex]r^2e^{(rt)} - 4re^{(rt)} + 4e^{(rt)} = 0[/tex]

Dividing the equation by [tex]e^{(rt)[/tex] (assuming it is non-zero), we get:

[tex]r^2 - 4r + 4 = 0[/tex]

This is a quadratic equation that can be factored as:

(r - 2)(r - 2) = 0

So, we have a repeated root r = 2.

The general solution of the differential equation is given by:

[tex]x(t) = C_1e^{(2t)} + C_2te^{(2t)[/tex]

where [tex]C_1[/tex] and [tex]C_2[/tex] are constants to be determined.

(ii) Assuming x(0) = 1 and x'(0) = 2:

We are given initial conditions x(0) = 1 and x'(0) = 2. Substituting these values into the general solution, we can find the specific solution of the differential equation associated with these conditions.

At t = 0:

[tex]x(0) = C_1e^{(2*0)} + C_2*0*e^{(2*0)} = C_1 = 1[/tex]

At t = 0:

[tex]x'(0) = 2C_1e^{(2*0)} + C_2(1)e^{(2*0)} = 2C_1 + C_2 = 2[/tex]

From the first equation, we have [tex]C_1 = 1[/tex]. Substituting this into the second equation, we get:

[tex]2(1) + C_2 = 2[/tex]

[tex]2 + C_2 = 2[/tex]

[tex]C_2 = 0[/tex]

Therefore, the specific solution of the differential equation associated with the given initial conditions is:

x(t) = [tex]e^{(2t)[/tex]

So, the solution of the differential equation E: x"(t) - 4x'(t) + 4x(t) = 0 is x(t) = [tex]e^{(2t)[/tex].

Learn more about homogenous equation on:

https://brainly.com/question/16405202

#SPJ4


hello, mutliple choice questions i need help with
QUESTION 15 What is (2+31/3+27 O 12 12+13) 12-13 13 QUESTION 16 What is exp(mi)? O-1 010 0 1 QUESTION 17 What is exp(m2) 0.-1) 0 11 2 QUESTION 18 What is the derivative of expc with respect to expo Ο

Answers

The expression (2 + 31/3 + 27) / (12 + 12 + 13) - 12 - 13 evaluates to -37/38.

Question 16:

The value of exp(mi) depends on the value of 'i'. Without knowing the specific value of 'i', it is not possible to determine the exact result. Therefore, the answer cannot be determined based on the given information.

Question 17:

Similar to Question 16, the value of exp(m2) depends on the specific value of 'm'. Without knowing the value of 'm', it is not possible to determine the exact result. Therefore, the answer cannot be determined based on the given information.

Question 18:

The derivative of exp(c) with respect to exp(o) is undefined. The reason is that the exponential function, exp(x), does not have a well-defined derivative with respect to the same function. In general, the derivative of exp(x) with respect to x is exp(x) itself, but when considering the derivative with respect to the same function, it leads to an indeterminate form. Therefore, the derivative of exp(c) with respect to exp(o) cannot be calculated.

In summary, the expression in Question 15 evaluates to -37/38. The values of exp(mi) in Question 16 and exp(m2) in Question 17 cannot be determined without knowing the specific values of 'i' and 'm' respectively. Finally, the derivative of exp(c) with respect to exp(o) is undefined due to the nature of the exponential function.

Learn more about evaluation of an expression:

https://brainly.com/question/29040058

#SPJ11

The Mean Value Theorem: If f is continuous on a closed interval (a,b) and differentiable on (a,b), then there is at least one point c in (a,b) such that f'(a) f(b) – f(a) b-a (a) (3 points) The dist

Answers

The Mean Value Theorem states that If f is continuous on a closed interval (a,b) and differentiable on (a,b), then there is at least one point c in (a,b) such that f'(a) f(b) – f(a) b-a (a). The average velocity of the object over the time interval [a,b] is equal to the instantaneous velocity of the object at time c.

The average velocity of the object over the time interval [a,b] is given by:

(a) (3 points) (f(b) - f(a))/(b - a)

The instantaneous velocity of the object at time c is given by the derivative of the distance function f at time c, or f'(c). We want to show that there exists a time c in [a,b] such that these two velocities are equal, or:

f'(c) = (f(b) - f(a))/(b - a)

By the Mean Value Theorem, since f is continuous on [a,b] and differentiable on (a,b), there exists a time c in (a,b) such that:

f'(c) = (f(b) - f(a))/(b - a)

Therefore, there exists a time c in [a,b] such that the average velocity of the object over the time interval [a,b] is equal to the instantaneous velocity of the object at time c.

To know more about average Velocity refer here:

https://brainly.com/question/29125647#

#SPJ11

Determine the derivative for each of the following. A)y=g3x b) y-in (3x*+2x+1) C) y-esinc3x) 0) y=x²4x

Answers

To determine the derivative of y = x²-4x, we use the power rule of differentiation. The power rule states that if y = [tex]x^{n}[/tex], then dy/dx = n[tex]x^{n-1}[/tex]. Here, n=2, so that we have dy/dx = 2x⁽²⁻¹⁾ - 4 × d/dx(x) = 2x - 4 = 2(x - 2)Therefore, the derivative of y = x²-4x is 2(x - 2).

The derivative of a function is the rate of change of that function at a given point. Here are the solutions to each of the following problems:

Derivative of y = g3x

To determine the derivative of y=g3x,

first consider that 3x is the argument of g(x).

Next, let u=3x, so that y=g(u).

Using the chain rule, we have dy/du=g'(u),

and du/dx=3. Combining these, we have:

dy/dx = dy/du × du/dx = g'(u) × 3 = 3g'(3x).

Therefore, the derivative of y = g3x is 3g'(3x).

Derivative of y = in (3x×+2x+1)

To determine the derivative of y = in (3x² + 2x + 1), we will use the chain rule and derivative of the natural logarithm function. The derivative of the natural logarithm function is given by:

d/dx (in x) = 1/x,

so that we have:

d/dx (in (3x² + 2x + 1)) = (1/(3x² + 2x + 1)) × d/dx (3x² + 2x + 1)

Using the chain rule, we find d/dx (3x² + 2x + 1) = 6x + 2, so that:

d/dx (in (3x² + 2x + 1)) = (1/(3x² + 2x + 1)) × (6x + 2) = (6x + 2)/(3x² + 2x + 1)

Therefore, the derivative of y = in (3x² + 2x + 1) is (6x + 2)/(3x² + 2x + 1).

Derivative of y = esin(c3x)

To find the derivative of y = e(sin(c3x)), we use the chain rule. Using this rule, the derivative is given by:

d/dx (e(sin(c3x))) = e(sin(c3x)) × d/dx (sin(c3x))

Using the derivative of the sine function, we have:

d/dx (sin(c3x)) = c3cos(c3x)

Therefore, the derivative of y = e sin(c3x) is given by:

d/dx (e(sin(c3x))) = e(sin(c3x)) × d/dx (sin(c3x))

= e(sin(c3x)) × c3cos(c3x) = c3e(sin(c3x))cos(c3x)

Derivative of y = x²-4x

To know  more about power rule

https://brainly.com/question/29288036

#SPJ11

A large elementary school has 4 fifth grade classes and 3 fourth grade classes. The fifth grade classes have 28,29,30 and 31 students. The fourth grade classes have 27, 28, and 29 students. Write a numerical expression to how find how many more fifth graders there are than fourth graders.

Answers

The numerical expression to find how many more fifth graders there are than fourth graders is (28 + 29 + 30 + 31) - (27 + 28 + 29)

To find how many more fifth graders there are than fourth graders, we need to calculate the difference between the total number of fifth graders and the total number of fourth graders.

Numerical expression: (Number of fifth graders) - (Number of fourth graders)

The number of fifth graders can be calculated by adding the number of students in each fifth grade class:

Number of fifth graders = 28 + 29 + 30 + 31

The number of fourth graders can be calculated by adding the number of students in each fourth grade class:

Number of fourth graders = 27 + 28 + 29

To learn more on Expressions click:

https://brainly.com/question/14083225

#SPJ1

(1 point) Write each vector in terms of the standard basis vectors i, j, k. (2,3) = = (0, -9) = = (1, -5,3) = = 000 (2,0, -4) = =

Answers

To write each vector in terms of the standard basis vectors i, j, k, we express the vector as a linear combination of the standard basis vectors. The standard basis vectors are i the = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

1) (2, 3) = 2i + 3j

2) (0, -9) = 0i - 9j = -9j

3) (1, -5, 3) = 1i - 5j + 3k

4) (2, 0, -4) = 2i + 0j - 4k = 2i - 4k

By expressing the given vectors in terms of the standard basis vectors, we represent them as the linear combinations of the i, j, and the k vectors.

To learn more about Vectors - brainly.com/question/31265178

#SPJ11

The population density of a city is given by P(x,y)= -20x2 - 25y2 + 480x+800y + 170, where x and y are miles from the southwest corner of the city limits and P is the number of people per square mile. Find the maximum population density, and specify where it occurs. GOIL The maximum density is people per square mile at (x.y=0

Answers

The maximum population density is people per square mile at (x,y) = (12,16).

Given that the population density of a city is given by P(x,y)=−[tex]20x^2−25y^2+480x+800y+170[/tex]. Where x and y are miles from the southwest corner of the city limits and P is the number of people per square mile.

We have to find the maximum population density and specify where it occurs.To find the maximum population density, we have to find the coordinates of the maximum point.The general form of the quadratic equation is:

f(x,y) =[tex]ax^2 + by^2 + cx + dy + e[/tex].Here a = -20, b = -25, c = 480, d = 800 and e = 170

Differentiating P(x,y) w.r.t x, we get[tex]∂P(x,y)/∂x[/tex] = -40x + 480

Differentiating P(x,y) w.r.t y, we get [tex]∂P(x,y)/∂y[/tex] = -50y + 800

For the maximum value of P(x,y), we need [tex]∂P(x,y)/∂x[/tex] = 0 and [tex]∂P(x,y)/∂y[/tex] = 0-40x + 480 = 0 => x = 12-50y + 800 = 0 => y = 16

So the maximum value of P(x,y) occurs at (x,y) = (12,16).

Hence, the maximum population density is people per square mile at (x,y) = (12,16).


Learn more about population density here:

https://brainly.com/question/16894337


#SPJ11

Find the solution of the system of equations.



7

=
−x−7y=



41
−41


6

=
x−6y=



37
−37

Answers

The required values x is -1 and y is 6.

Given that the system of equations are ;

Equation 1: -x-7y = -41 and Equation 2: x-6y = -37.

To find the values of x and y, consider two equations and  solve by elimination method. That states cancel any one variable either by adding or  subtracting, then the other variable can be found by substituting the one variable in any one equation.

Add equation 1 and equation 2 gives,

[tex]\begin{array}{cccc}-x&-7y&=-41\\x&-6y&=-37\\+&-----&--------\\0&-13y&=-78\end{array}[/tex]

That implies, -13y = -78

Divide by -13 on both sides gives,

y = 6.

Substitute the value y = 6 in the equation 2 gives,

x - 6 (6) = -37

On multiplying gives,

x - 36 = -37

On adding by 36 on both sides gives,

x = -1.

Hence, the required values x is -1 and y is 6.

Learn more about system of equation, click here:

https://brainly.com/question/29520123

#SPJ1

Answer the following true/false questions. If the equation Ax=b has two different solutions then it has infinitely many solutions

Answers

False. If the equation Ax=b has two different solutions, it does not necessarily imply that it has infinitely many solutions.

The equation Ax=b represents a system of linear equations, where A is a coefficient matrix, x is a vector of variables, and b is a vector of constants. If there are two different solutions to this equation, it means that there are two distinct vectors x1 and x2 that satisfy Ax=b.

However, having two different solutions does not imply that there are infinitely many solutions. It is possible for a system of linear equations to have only a finite number of solutions. For example, if the coefficient matrix A is invertible, then there will be a unique solution to the equation Ax=b, and there won't be infinitely many solutions.

The existence of infinitely many solutions usually occurs when the coefficient matrix has dependent rows or when it is singular, leading to an underdetermined system or a system with free variables. In such cases, the system may have infinitely many solutions.


To learn more about matrix click here: brainly.com/question/11989522


#SPJ11

Question * Let D be the region bounded below by the cone z = √x² + y² and above by the sphere x² + y² + z² = 25. Then the z-limits of integration to find the volume of D, using rectangular coor

Answers

To find the volume of the region D bounded below by the cone [tex]z=\sqrt{x^2+y^2}[/tex] and above by the sphere [tex]x^2+y^2+z^2=25[/tex], using rectangular coordinates, the z-limits of integration need to be determined. The z-limits depend on the intersection points of the cone and the sphere.

To determine the z-limits of integration for finding the volume of region D, we need to find the intersection points of the cone [tex]z=\sqrt{x^2+y^2}[/tex] and the sphere [tex]x^2+y^2+z^2=25[/tex]. Setting these equations equal to each other, we have [tex]\sqrt{x^2+y^2}=\sqrt{25-x^2-y^2}[/tex]. Squaring both sides, we get [tex]x^2+y^2=25-x^2-y^2[/tex]. Simplifying, we obtain [tex]2x^2+2y^2=25[/tex]. Rearranging, we have [tex]x^2+y^2=12.5[/tex]. This equation represents the intersection curve between the cone and the sphere. By examining this curve, we can determine the z-limits of integration.

Since the cone is defined as [tex]z=\sqrt{x^2+y^2}[/tex], the lower z-limit is given by z = 0. For the upper z-limit, we need to find the z-coordinate of the intersection curve between the cone and the sphere. By substituting [tex]x^2+y^2=12.5[/tex] into the equation of the cone, we have [tex]z=\sqrt{12.5}[/tex]. Therefore, the upper z-limit is [tex]z=\sqrt{12.5}[/tex]. Hence, the z-limits of integration for finding the volume of region D using rectangular coordinates are 0 to [tex]\sqrt{12.5}[/tex].

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11








(b) y = 1. Find for each of the following: (a) y = { (c) +-7 (12 pts) 2. Find the equation of the tangent line to the curve : y += 2 + at the point (1, 1) (Ppts) 3. Find the absolute maximum and absol

Answers

2. The equation of the tangent line to the curve [tex]y = x^2+ 2[/tex] at the point (1, 1) is y = 2x - 1.

3. The absolute maximum value of f(x) = -12x + 1 on the interval [1, 3] is -11, and the absolute minimum value is -35.

2. Find the equation of the tangent line to the curve: [tex]y = x^2+ 2[/tex] at the point (1, 1).

To find the equation of the tangent line, we need to determine the slope of the tangent line at the given point and use it to form the equation.

Given point:

P = (1, 1)

Step 1: Find the derivative of the curve

dy/dx = 2x

Step 2: Evaluate the derivative at the given point

m = dy/dx at x = 1

m = 2(1) = 2

Step 3: Form the equation of the tangent line using the point-slope form

[tex]y - y_1 = m(x - x_1)y - 1 = 2(x - 1)y - 1 = 2x - 2y = 2x - 1[/tex]

3. Find the absolute maximum and absolute minimum values of f(x) = -12x + 1 on the interval [1, 3].

To find the absolute maximum and minimum values, we need to evaluate the function at the critical points and endpoints within the given interval.

Given function:

f(x) = -12x + 1

Step 1: Find the critical points by taking the derivative and setting it to zero

f'(x) = -12

Set f'(x) = 0 and solve for x:

-12 = 0

Since the derivative is a constant and does not depend on x, there are no critical points within the interval [1, 3].

Step 2: Evaluate the function at the endpoints and critical points

f(1) = -12(1) + 1 = -12 + 1 = -11

f(3) = -12(3) + 1 = -36 + 1 = -35

Step 3: Determine the absolute maximum and minimum values

The absolute maximum value is the largest value obtained within the interval, which is -11 at x = 1.

The absolute minimum value is the smallest value obtained within the interval, which is -35 at x = 3.

Learn more about the absolute maxima and minima at

brainly.com/question/32084551

#SPJ4

The complete question is -

2. Find the equation of the tangent line to the curve: y += 2 + at the point (1, 1).

3. Find the absolute maximum and absolute minimum values of f(x) = -12x +1 on the interval [1, 3].

If æ(t) = ln (10t) and y(t) = 5t+3, eliminate the parameter to write the parametric equations as a Cartesian equation. Select the correct answer below: x = ln (2y – 6) O x = ln (2y – š) O x = ln (50y +30) O x = ln (2y – 30)

Answers

The parametric equations can be expressed as a Cartesian equation:

x = ln(2y - 6).

To eliminate the parameter and write the parametric equations as a Cartesian equation, we need to express the parameter (t) in terms of the Cartesian variables (x and y). Let's begin by solving the second equation for t:

y(t) = 5t + 3

Subtracting 3 from both sides:

5t = y - 3

Dividing both sides by 5:

t = (y - 3) / 5

Now we can substitute this value of t into the first equation:

æ(t) = ln(10t)

æ((y - 3) / 5) = ln(10((y - 3) / 5))

æ((y - 3) / 5) = ln(2(y - 3))

So, the correct answer is:

x = ln(2(y - 3))

Therefore, the option "x = ln(2y - 6)" is the correct answer.

To learn more about Cartesian equations visit : https://brainly.com/question/32622984

#SPJ11

X = y = 4. The curves y = 2x' and y = (2 - x)(5x + 6) intersect in 3 points. Find the x-coordinates of these points. -

Answers

To find the x-coordinates of the points where the curves y = 2x and y = (2 - x)(5x + 6) intersect, we need to set the two equations equal to each other and solve for x.

Setting y = 2x equal to y = (2 - x)(5x + 6), we have:

2x = (2 - x)(5x + 6)

Expanding the right side:

2x = 10x^2 + 12x - 5x - 6x^2

Combining like terms:

0 = 10x^2 - 4x^2 + 7x - 6

Rearranging the equation:

0 = 6x^2 + 7x - 6

Now, we can solve this quadratic equation by factoring or using the quadratic formula. However, it is mentioned that the curves intersect at three points, indicating that the quadratic equation has two distinct real roots and one repeated real root. Therefore, we can factor the quadratic equation as:

0 = (2x - 1)(3x + 6)

Setting each factor equal to zero:

2x - 1 = 0 or 3x + 6 = 0

Solving these equations gives:

x = 1/2 or x = -2

Therefore, the x-coordinates of the points where the curves intersect are x = 1/2 and x = -2.

Learn more about quadratic formula here: brainly.com/question/22364785

#SPJ11

The Point on the plane 2x + 3y - z=1 that is closest to the point (1.1.-2) is

Answers

the point on the plane 2x + 3y - z = 1 that is closest to the point (1, 1, -2) is (1 - (3/2)y, y, 1).

The values of x and y may vary, but z is always equal to 1.

To find the point on the plane 2x + 3y - z = 1 that is closest to the point (1, 1, -2), we can use the concept of orthogonal projection.

The vector normal to the plane is given by the coefficients of x, y, and z in the equation.

this case, the normal vector is (2, 3, -1).

Now, let's consider a vector from the point on the plane (x, y, z) to the point (1, 1, -2). This vector can be represented as (1 - x, 1 - y, -2 - z).

Since the normal vector is orthogonal (perpendicular) to any vector on the plane, the dot product of the normal vector and the vector from the point on the plane to (1, 1, -2) should be zero.

(2, 3, -1) • (1 - x, 1 - y, -2 - z) = 0

Expanding the dot product:

2(1 - x) + 3(1 - y) - (2 + z) = 0

Simplifying the equation:

2 - 2x + 3 - 3y - 2 - z = 0

-2x - 3y - z = -3

We also have the equation of the plane given as 2x + 3y - z = 1. We can solve this system of equations to find the values of x, y, and z.

Solving the system of equations:

-2x - 3y - z = -3

2x + 3y - z = 1

Adding the two equations together:

-2x - 3y - z + 2x + 3y - z = -3 + 1

-2z = -2

z = 1

Substituting z = 1 into one of the equations:

2x + 3y - 1 = 1

2x + 3y = 2

Let's solve for x in terms of y:

2x = 2 - 3y

x = 1 - (3/2)y

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

52 cards in the deck of cards which are divided into 4 different
colors. When randomly selecting five cards, what is the probability
that you get all of them of the same colour?

Answers

the probability of getting all five cards of the same color (in this case, all hearts) is approximately 0.000494 or 0.0494%.

To calculate the probability of getting all five cards of the same color, we need to consider the number of favorable outcomes (getting five cards of the same color) and the total number of possible outcomes (all possible combinations of five cards).

There are four different colors in the deck: hearts, diamonds, clubs, and spades.

assume we want to calculate the probability of getting all five cards of hearts.

Favorable outcomes: There are 13 hearts in the deck, so we need to choose 5 hearts out of the 13 available.

Possible outcomes: We need to choose 5 cards out of the total 52 cards in the deck.

The probability can be calculated as:

P(5 cards of hearts) = (Number of favorable outcomes) / (Total number of possible outcomes)                     = (Number of ways to choose 5 hearts) / (Number of ways to choose 5 cards from 52)

Number of ways to choose 5 hearts = C(13, 5) = 13! / (5!(13-5)!) = 1287

Number of ways to choose 5 cards from 52 = C(52, 5) = 52! / (5!(52-5)!) = 2598960

P(5 cards of hearts) = 1287 / 2598960 ≈ 0.000494

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Let 8 (0 ≤ 0≤ π) be the angle between two vectors u and v. If 16 |u| = 5, |v|= 2, u.v = 6, uxv= 16 8 3 3 2 3 find the following. 1. sin(0) = 2. V-V= 3. /v x (u + v) = < (enter integers or fractio

Answers

The sine of π/8 is (√2 - √6)/4 and the value of the expression |V × (U + V)| is equal to √901.

To find the values based on the given information, let's break down the problem:

1. Sin(θ):

Since θ is given as 8 (0 ≤ θ ≤ π), we can directly evaluate sin(θ). However, it seems there might be a typo in the question because the value of θ is given as 8, which is not within the specified range of 0 to π.

Assuming the value is actually π/8, we can proceed.

The sine of π/8 is (√2 - √6)/4.

2. V - V:

The expression V - V represents the subtraction of vector V from itself. Any vector subtracted from itself will result in the zero vector.

Therefore, V - V = 0.

3. |V × (U + V)|:

To calculate the magnitude of the cross product V × (U + V), we need to find the cross product first. The cross product of two vectors is given by the determinant of a matrix.

Using the given values, we have:

V × (U + V) = 16(8i + 3j + 3k) × (i + 2j + 3k)

           = 16(24i - 15j + 10k)

To find the magnitude, we calculate the square root of the sum of the squares of the components:

|V × (U + V)| = [tex]\sqrt{(24)^2 + (-15)^2 + (10)^2[/tex]

             = [tex]\sqrt{576 + 225 + 100[/tex]

             = √901

Please note that the answer for sin(θ) assumes the value of θ to be π/8, as the given value of 8 does not fall within the specified range.

Learn more about expression:

https://brainly.com/question/1859113

#SPJ11

Given f (9) = 2, f'(9= 10, 9(9) =-1, and g' (9) = 9, find the values of the following. (a) (fg)'(9) = Number (b) ()'o= 9 Number

Answers

The values will be (a) (fg)'(9) = 92 and (b) (f/g)'(9) = -8/3.

(a) To find (fg)'(9), we need to use the product rule. The product rule states that if we have two functions f(x) and g(x), then the derivative of their product, (fg)', is given by (fg)' = f'g + fg'. Using the given values, f'(9) = 10 and g'(9) = 9, we can substitute these values into the product rule formula. So, (fg)'(9) = f'(9)g(9) + f(9)g'(9) = 10 * (-1) + 2 * 9 = -10 + 18 = 8.

(b) To find (f/g)'(9), we need to use the quotient rule. The quotient rule states that if we have two functions f(x) and g(x), then the derivative of their quotient, (f/g)', is given by (f/g)' = (f'g - fg')/g^2. Using the given values, f'(9) = 10, g(9) = 9, and g'(9) = 9, we can substitute these values into the quotient rule formula. So, (f/g)'(9) = (f'(9)g(9) - f(9)g'(9))/(g(9))^2 = (10 * 9 - 2 * 9)/(9)^2 = (90 - 18)/81 = 72/81 = 8/9.

Learn more about product rule

https://brainly.com/question/29198114

#SPJ11

Use a change of variables to evaluate the following indefinite integral 56 = x)""(x + 1) dx 6x ) ax pre: Determine a change of variables from x to u. Choose the correct answer below. A. uy° + X OB. u= (x® + x) 13 (x x OC. u=6x5 + 1 OD. u = x6 dit:

Answers

The problem asks for a change of variables to evaluate the indefinite integral [tex]\int\limits(x^3 + x)/(x + 1) dx[/tex]. We need to determine the appropriate change of variables, which is given as options A, B, C, and D.

To find the correct change of variables, we can try to simplify the integrand and look for a pattern. In this case, we notice that the integrand has terms involving both x and [tex](x + 1),[/tex] so a change of variables that simplifies this expression would be helpful.

Option C,[tex]u = 6x^5 + 1,[/tex]does not simplify the expression in the integrand and is not a suitable change of variables for this problem.

Option D, [tex]u = x^6[/tex], also does not simplify the expression in the integrand and is not a suitable change of variables.

Option A, [tex]u = y^2 +x[/tex], and option B,[tex]u = (x^2 + x)^3[/tex], both involve combinations of x an [tex](x + 1)[/tex]. However, option B is the correct change of variables because it preserves the structure of the integrand, allowing for simplification.

In conclusion, the appropriate change of variables to evaluate the given integral is [tex]u = (x^2 + x)^3[/tex] which corresponds to option B.

Learn more about variables here;

https://brainly.com/question/28248724

#SPJ11

2) Evaluate the integral and check your answer by differentiating. -2x3 dx a) a) 1'"

Answers

The integral of -2x^3 dx is -1/2 * x^4 + C.

To evaluate the integral ∫-2x^3 dx, we can use the power rule of integration, which states that ∫x^n dx = (1/(n+1)) * x^(n+1).

Applying the power rule, we have:

∫-2x^3 dx = -2 * ∫x^3 dx

Using the power rule, we integrate x^3:

= -2 * (1/(3+1)) * x^(3+1) + C

= -2/4 * x^4 + C

= -1/2 * x^4 + C

So, the integral of -2x^3 dx is -1/2 * x^4 + C.

To check this result, we can differentiate -1/2 * x^4 with respect to x and see if we obtain -2x^3.

Differentiating -1/2 * x^4:

d/dx (-1/2 * x^4) = -1/2 * 4x^3

= -2x^3

As we can see, the derivative of -1/2 * x^4 is indeed -2x^3, which matches the integrand -2x^3.

Therefore, the answer is -1/2 * x^4 + C

Learn more about the integral here:

brainly.com/question/18125359

#SPJ11

Other Questions
Plasti-Tech Ltd. has a target capital structure of 55% by common stock, 10% by preferred stock, and 35% by debt. The company's required return is 15% on the common stock, 10% on the preferred stock. Pasti-Tech has $500,000 face value bond issue outstanding with stated annual coupon rate of 6% and yield-to-maturity of 8%, currently quoted at 87.52% of the face value. The firm has tax rate 21%. What is Plasti-Tech's WACC? george and edith jackson own 500 shares of publicly traded acme stock. they purchased the shares 10 years ago for $70,000, and now wish to give their son, albert, a gift of the stock, now worth $90,000. albert is 30 years old and not a dependent of his parents. george and edith file a joint return for 2022 and are in the 24% marginal tax bracket while their son albert is in the 10% marginal tax bracket. george and edith are not concerned with gift taxes, as their estate is significantly below the lifetime exemption equivalent. in order to create the lowest possible tax liability on the sale of the stock you would advise that: Plaques were attached to the spacecrafts Pioneer 10 and 11 just in case they were discovered by an intelligent civilization. Properly identify some of the figures on this plaque.A. Figures of a man and womanB. A hyperfine transition of neutral hydrogenC. Planets of the Solar SystemD. Position of the Sun relative to pulsarsE. Silhouette of spacecraft Suppose that Newton's method is used to locate a root of the equation /(x) =0 with initial approximation x1 = 3. If the second approximation is found to be x2 = -9, and the tangent line to f(x) at x = 3 passes through the point (13,3), find (3) antan's method with initial annroximation 2 to find xz, the second approximation to the root of Organizations want more tightly integrated business processes are likely to invest in ______.a. functional area applications that are best-of-breedb. cloud computing servicesc. Big Data processing platformsd. enterprise information systems (EIS) Works Cited Questions WorksheetPart A: Create your Works Cited page here. Remember to follow the formatting instructions in the lesson.Part B: Identify specific information from your sources that can be used as supporting evidence in your essay.Source 1: Re-type or copy and paste the information for your first source (alphabetically) here. Use correct MLA format.Source 1: Answer the following questions about your first source here:What information from this source seems the most important? Include at least two specific quotations, facts, statistics or pieces of evidence.Explain how this information supports your essay.Source 2: Re-type or copy and paste the information for your second source (alphabetically) here. Use correct MLA format.Source 2: Answer the following questions about your first source here:What information from this source seems the most important? Include at least two specific quotations, facts, statistics or pieces of evidence.Explain how this information supports your essay.Source 3: Re-type or copy and paste the information for your third source (alphabetically) here. Use correct MLA format.Source 3: Answer the following questions about your third source here:What information from this source seems the most important? Include at least two specific quotations, facts, statistics or pieces of evidence.Explain how this information supports your essay. Which of the following is NOT correct? Group of answer choicesIntellectual property laws are written to protect an idea.Protection of intellectual property gives people an incentive to be creative.Intellectual property laws are written to protect the tangible results of an idea.Song lyrics, a computer program, and a sculpture are examples of creations that can be protected by intellectual property laws. Select features of a successful breeding management program Let s(t) v(t) = Where does the velocity equal zero? t = and t = Find a function for the acceleration of the particle. a(t) = 6t + 54t + 144t be the equation of motion for a particle. Find a function for the velocity. Let f(x) = ln(16x14 17x + 50) f'(x) = Solve f'(x) = 0 No decimal entries allowed. Find exact solution. 2= Which of the below is/are equivalent to the statement that a set of vectors (V1 , Vp} is linearly independent? Suppose also that A = [V Vz Vp]: a) A linear combination of V1, _. Yp is the zero vectorif and only if all weights in the combination are zero. b) The vector equation x1V + Xzlz XpVp =O has only the trivial solution c) There are weights, not allzero,that make the linear combination of V1, Vp the zero vector: d) The system with augmented matrix [A 0] has freewvariables: e) The matrix equation Ax = 0 has only the trivial solution: f) All columns of the matrix A are pivot columns. 13. DETAILS SCALCET9 11.6.021. Use the Root Test to determine whether the series convergent or divergent. 00 n2 + 3 n=1 52 + 8 Identify ani Evaluate the following limit. lim va 00 n Select... Since li style is: group of answer choices the setting or time in which a work of art is created; we refer to the context in order to fully understand and assess a work of art. a particular manner in which artists work which permits the grouping of works into related categories. the message or meaning in a work of art. all answers are incorrect. If an electron is accelerated from rest through a potential difference of 1 200 V, find its approximate velocity at the end of this process. (e= 1.6 x 10-19 C; m.-9.1 x 10-31 kg)a. 1.0 x 107 m/sb. 1.4 x 107 m/sc. 2.1 x 10' m/sd. 2.5 x 10' m/s what must be done to calculate the enthalpy of reaction? check all that apply. the first equation must be halved. the first equation must be reversed. the second equation must be halved. the second equation must be reversed. the third equation must be halved. the third equation must be reversed. what is the overall enthalpy of reaction? delta.hrxn find both the opposite, or additive inverse, and the reciprocal, or the multiplicative inverse, of the following number: 25 Neurological symptoms that occur shortly after a seizure are a(n)postictal eventtonic-clonic eventictal eventpartial seizure eventaura event Organizations periodically have an external entity review the controls so as to uncover any potential problems in the controls. This process is called ________.a. information modificationb. business continuity planc. recovery plan objective analysisd. information systems audite. risk analysis Part 3: Energy Conversions 7. Record your data in the chart and include at least 5 potential-kinetic energy conversions shown in your device's construction. Example Item Description of potential-kinetic energy conversion Example Book The book had gravitational potential energy when it was on the table. Then as the book fell off the table, it was in motion and had kinetic energy. 1 2 3 4 5 One of exploration's greatest strengths is being unstructured.Ture False