.
Using Horner's scheme, determine the value of b provided that f (x)
= x4 − bx2 + 2x − 4 is divisible by x + 3.

Answers

Answer 1

To determine the value of b using Horner's scheme and the divisibility condition, we can perform synthetic division using the root -3 (x + 3) and equate the remainder to zero. This will help us find the value of b.

To determine the value of b such that the polynomial f(x) = x^4 - bx^2 + 2x - 4 is divisible by x + 3 using Horner's scheme, follow these step-by-step explanations:

Write down the coefficients of the polynomial in descending order of powers of x. The given polynomial is:

f(x) = x^4 - bx^2 + 2x - 4

Set up the Horner's scheme table by writing the coefficients of the polynomial in the first row, and place a placeholder (0) for the value of x.

       | 1 | 0 | -b | 2 | -4

Calculate the first value in the second row by copying the coefficient from the first row.

       | 1 | 0 | -b | 2 | -4

        ------------------

         1

Multiply the previous value in the second row by the value of x in the first row (which is -3), and write the result in the next column.

       | 1 | 0 | -b | 2 | -4

        ------------------

         1   -3

Add the next coefficient from the first row to the result in the second row and write the sum in the next column.

       | 1 | 0 | -b | 2 | -4

        ------------------

         1   -3   3b

Repeat steps 4 and 5 until all coefficients are used and you reach the final column.

       | 1 | 0 | -b | 2 | -4

        ------------------

         1   -3   3b   -7 - 12

Since we want to determine the value of b, set the final result in the last column equal to zero and solve for b.

         -7 - 12 = 0

         -19 = 0

Solve the equation -19 = 0, which has no solution. This means there is no value of b that makes the polynomial f(x) divisible by x + 3.

Therefore, there is no value of b that satisfies the condition of f(x) being divisible by x + 3.

Learn more about synthetic division here:

https://brainly.com/question/29809954

#SPJ11


Related Questions

The function f(x)=10xln(1+2x) is represented as a power series
f(x)=∑n=0 to [infinity] c_n x^n.
Find the FOLLOWING coefficients in the power series.
c0=
c1=
c2=
c3=
c4=
Find the radius of convergence R of the series.
R= .

Answers

The coefficients in the power series representation of the function f(x) = 10xln(1+2x) are c0 = 0, c1 = 10, c2 = -10, c3 = 10, and c4 = -10. The radius of convergence (R) of the series is 1/2.

To find the coefficients of the power series, we can use the formula for the coefficient cn:

cn = (1/n!) * f⁽ⁿ⁾(0),

where f⁽ⁿ⁾(0) denotes the nth derivative of f(x) evaluated at x = 0.

Taking the derivatives of f(x) = 10xln(1+2x), we find:

f'(x) = 10ln(1+2x) + 10x(1/(1+2x))(2) = 10ln(1+2x) + 20x/(1+2x),

f''(x) = 10(1/(1+2x))(2) + 20(1+2x)(-1)/(1+2x)² = 10/(1+2x)² - 40x/(1+2x)²,

f'''(x) = -40/(1+2x)³ + 40(1+2x)(2)/(1+2x)⁴ = -40/(1+2x)³ + 80x/(1+2x)⁴,

f⁽⁴⁾(x) = 120/(1+2x)⁴ - 320x/(1+2x)⁵.

Evaluating these derivatives at x = 0, we get:

f'(0) = 10ln(1) + 20(0)/(1) = 0,

f''(0) = 10/(1)² - 40(0)/(1)² = 10,

f'''(0) = -40/(1)³ + 80(0)/(1)⁴ = -40,

f⁽⁴⁾(0) = 120/(1)⁴ - 320(0)/(1)⁵ = 120.

Therefore, the coefficients are c0 = 0, c1 = 10, c2 = -10, c3 = 10, and c4 = -10.

To determine the radius of convergence (R) of the power series, we can use the ratio test. The formula for the ratio test states that if the limit as n approaches infinity of |cn+1/cn| is L, then the series converges if L < 1 and diverges if L > 1.

In this case, we have:

|cn+1/cn| = |(c⁽ⁿ⁺¹⁾/⁽ⁿ⁺¹⁾!) / (c⁽ⁿ⁾/⁽ⁿ⁾!)| = |(f⁽ⁿ⁺¹⁾(0)/⁽ⁿ⁺¹⁾!) / (f⁽ⁿ⁾(0)/⁽ⁿ⁾!)| = |f⁽ⁿ⁺¹⁾(0)/f⁽ⁿ⁾(0)|.

Evaluating this ratio for n → ∞, we find:

|f⁽ⁿ⁺¹⁾(0)/f⁽ⁿ⁾(0)| = |(120/(1)⁽ⁿ⁺¹⁾ - 320(0)/(1)

Learn more about radius here: https://brainly.com/question/30106091

#SPJ11

3. Given that sin(0) = 0.6 for an acute angle 0, find the
values for the following by using trigonometric
4 Evaluate the following:
5. Find the exact value of the following expres
3. Given that sin(8) = 0.6 for an acute angle 8, find the values for the following by using trigonometric identities: a) cos(6) b) tan(8) = 4. Evaluate the following a) sin(-) b) arccos c) tan"" (73) 5"

Answers

Using trigonometric identities, the exact values are cos(8) = √(1 - sin^2(8)) ≈ 0.8 and tan(8) = sin(8) / cos(8) ≈ 0.75.

To find the value of cos(8), we can use the identity cos^2(θ) + sin^2(θ) = 1. Plugging in the value of sin(8) = 0.6, we get cos^2(8) + 0.6^2 = 1. Solving for cos(8), we have cos(8) ≈ √(1 - 0.6^2) ≈ 0.8.

To find the value of tan(8), we can use the identity tan(θ) = sin(θ) / cos(θ). Plugging in the values of sin(8) = 0.6 and cos(8) ≈ 0.8, we have tan(8) ≈ 0.6 / 0.8 ≈ 0.75.

Moving on to the next set of evaluations:

a) sin(-θ): The sine function is an odd function, which means sin(-θ) = -sin(θ). Since sin(0) = 0.6, we have sin(-0) = -sin(0) = -0.6.

b) arccos(θ): The arccosine function is the inverse of the cosine function. If cos(θ) = 0.6, then θ = arccos(0.6). The value of arccos(0.6) can be found using a calculator or reference table.

c) tan(73): To evaluate tan(73), we need to know the value of the tangent function at 73 degrees. This can be determined using a calculator or reference table

In summary, using the given information, we found that cos(8) ≈ 0.8 and tan(8) ≈ 0.75. For the other evaluations, sin(-0) = -0.6, arccos(0.6) requires additional calculation, and tan(73) depends on the value of the tangent function at 73 degrees, which needs to be determined.

Learn more about cosine function here:

https://brainly.com/question/3876065

#SPJ11










1. Let f(x) 1+x2 .. Find the average slope value of f(x) on the interval (0,2). Then using the Mean Value Theorem, find a number c in (0,2] so that f'(c) = the average slope value. a 2. Find the absol

Answers

The average slope value of f(x) on the interval (0,2) is (f(2) - f(0))/(2 - 0). Then, by the Mean Value Theorem, there exists a number c in (0,2] such that f'(c) equals the average slope value.

Given f(x) = 1 + x^2, we can find the average slope value of f(x) on the interval (0,2) by calculating the difference in function values at the endpoints divided by the difference in x-values:

Average slope = (f(2) - f(0))/(2 - 0)

Substituting the values into the formula:

Average slope = (1 + 2^2 - (1 + 0^2))/(2 - 0) = (5 - 1)/2 = 4/2 = 2

Now, according to the Mean Value Theorem, if a function is continuous on a closed interval and differentiable on the open interval, there exists a number c in the open interval such that the instantaneous rate of change (derivative) at c is equal to the average rate of change over the closed interval.

Therefore, there exists a number c in (0,2] such that f'(c) = 2, which is equal to the average slope value.

To find the absolute maximum and minimum values of f(x) on the interval [0,2], we need to evaluate the function at the critical points (where the derivative is zero or undefined) and at the endpoints of the interval.

The derivative of f(x) = 1 + x^2 is f'(x) = 2x. Setting f'(x) = 0, we find the critical point at x = 0. Evaluating the function at the critical point and the endpoints:

f(0) = 1 + 0^2 = 1

f(2) = 1 + 2^2 = 5

Comparing these function values, we can conclude that the absolute minimum value of f(x) on the interval [0,2] is 1, and the absolute maximum value is 5.

To learn more about Mean Value Theorem click here

brainly.com/question/30403137

#SPJ11

take the suitable integers and verified the following
1) subtraction is not associative
2) multiplication is associative
3) division is not closed
4) multiplication is distributive over subtraction
5) product of odd number of negative integer is a negative integer ​

Answers

The verified statemeent are:

Subtraction is not associative (True)Multiplication is associative (True)Division is not closed (True)Multiplication is distributive over subtraction (True)Product of an odd number of negative integers is a negative integer (False)

Let's verify the given statements using suitable integers:

1. Subtraction is not associative:

Let's choose integers a = 2, b = 3, and c = 4.

(a - b) - c = (2 - 3) - 4 = -1 - 4 = -5

a - (b - c) = 2 - (3 - 4) = 2 - (-1) = 2 + 1 = 3

Since (-5) is not equal to 3, we can conclude that subtraction is not associative.

2. Multiplication is associative:

Let's choose integers a = 2, b = 3, and c = 4.

(a * b) * c = (2 * 3) * 4 = 6 * 4 = 24

a * (b * c) = 2 * (3 * 4) = 2 * 12 = 24

Since 24 is equal to 24, we can conclude that multiplication is associative.

3. Division is not closed:

Let's choose integers a = 4 and b = 2.

a / b = 4 / 2 = 2

However, if we choose a = 4 and b = 0, then the division is not defined because we cannot divide by zero.

4. Multiplication is distributive over subtraction:

Let's choose integers a = 2, b = 3, and c = 4.

a * (b - c) = 2 * (3 - 4) = 2 * (-1) = -2

(a * b) - (a * c) = (2 * 3) - (2 * 4) = 6 - 8 = -2

Since -2 is equal to -2, we can conclude that multiplication is distributive over subtraction.

5. Product of an odd number of negative integers is a negative integer:

Let's choose three negative integers: a = -2, b = -3, and c = -4.

a * b * c = (-2) * (-3) * (-4) = 24

Since 24 is a positive integer, the statement is not true.

The product of an odd number of negative integers is a positive integer.

Learn more about integers here:

https://brainly.com/question/18730929

#SPJ1

PLEASE HELP ANSWER THIS 40 POINTS :)
Find the missing side

Answers

Answer: 23?

Step-by-step explanation:

That has to have a sum of 80 so that = 57

80-57 = 23

Given r(t) = f(t) i + g(t) j Prove that r ’(t) = f ’(t) i + g
’(t) j using limits

Answers

If r(t) = f(t) i + g(t) j then r ’(t) = f ’(t) i + g’(t) j is true by using limits.

To prove that r'(t) = f'(t)i + g'(t)j using limits, we need to show that the limit of the difference quotient of r(t) as t approaches 0 is equal to the derivative of f(t)i + g(t)j as t approaches 0.

Let's start with the definition of the derivative:

r'(t) = lim┬(h→0)⁡(r(t+h) - r(t))/h

Expanding r(t+h) using the vector representation, we have:

r(t+h) = f(t+h)i + g(t+h)j

Similarly, expanding r(t), we have:

r(t) = f(t)i + g(t)j

Substituting these expressions back into the difference quotient, we get

r'(t) = lim┬(h→0)⁡((f(t+h)i + g(t+h)j) - (f(t)i + g(t)j))/h

Simplifying the expression inside the limit, we have

r'(t) = lim┬(h→0)⁡((f(t+h) - f(t))i + (g(t+h) - g(t))j)/h

Now, we can factor out i and j

r'(t) = lim┬(h→0)⁡(f(t+h) - f(t))/h × i + lim┬(h→0)⁡(g(t+h) - g(t))/h × j

Recognizing that the limit of the difference quotient represents the derivative, we can rewrite the expression as

r'(t) = f'(t)i + g'(t)j

Therefore, we have shown that r'(t) = f'(t)i + g'(t)j using limits.

To know more about limits click here :

https://brainly.com/question/19863495

#SPJ4








(1 point) Rework problem 3 from section 2.4 of your text. Assume that you randomly select 4 cards from a deck of 52. What is the probability that all of the cards selected are hearts?

Answers

The probability that all four cards selected are hearts from a standard deck of 52 cards is approximately 0.000181 or 0.0181%.

A standard deck of 52 cards contains 13 hearts (one for each rank from Ace to King). When selecting the first card, there are 52 options, and 13 of them are hearts. Therefore, the probability of selecting a heart as the first card is 13/52, which simplifies to 1/4 or 0.25.

After the first card is selected, there are 51 cards left in the deck, including 12 hearts. So, the probability of selecting a heart as the second card is 12/51, which simplifies to 4/17 or approximately 0.2353.

Similarly, for the third card, the probability of selecting a heart is 11/50 (since there are 11 hearts remaining out of 50 cards).

Finally, for the fourth card, the probability of selecting a heart is 10/49 (10 hearts remaining out of 49 cards).

To find the probability of all four cards being hearts, we multiply the probabilities of each individual selection together: (13/52) * (12/51) * (11/50) * (10/49) ≈ 0.000181 or 0.0181%. Therefore, the probability of selecting four hearts from a deck of 52 cards is approximately 0.000181 or 0.0181%.

Learn more about Ace here:

https://brainly.com/question/15844250

#SPJ11

Prove that in a UFD (Unique Factorization Domain), every irreducible element is
prime element.

Answers

In a Unique Factorization Domain (UFD), every irreducible element is a prime element.

To prove that every irreducible element in a UFD is a prime element, we need to show that if an element p is irreducible and divides a product ab, then p must divide either a or b. Assume that p is an irreducible element in a UFD and p divides the product ab. We aim to prove that p must divide either a or b.

Since p is irreducible, it cannot be factored further into non-unit elements. Therefore, p is not divisible by any other irreducible elements except itself and its associates.

Now, suppose p does not divide a. In this case, p and a are relatively prime, as they do not share any common factors. By the unique factorization property of UFD, p must divide the product ab only if it divides b. Therefore, we have shown that if p is an irreducible element and p divides a product ab, then p must divide either a or b. Hence, p is a prime element. By proving that every irreducible element in a UFD is a prime element, we establish the result that in a UFD, every irreducible element is prime.

LEARN MORE ABOUT domain here: brainly.com/question/30133157

#SPJ11

a coin-operated machine sells plastic rings. it contains 11 black rings, 7 purple rings, 14 red rings, and 6 green rings. evelyn puts a coin into the machine. find the theoretical probability she gets a purple ring. express your answer as a decimal. if necessary, round your answer to the nearest thousandth

Answers

Therefore, the theoretical probability of Evelyn getting a purple ring from the coin-operated machine is approximately 0.184.

To find the theoretical probability of Evelyn getting a purple ring from the coin-operated machine, we need to determine the ratio of the number of purple rings to the total number of rings available.

The total number of rings in the machine is:

11 (black rings) + 7 (purple rings) + 14 (red rings) + 6 (green rings) = 38 rings.

The number of purple rings is 7.

The theoretical probability of Evelyn getting a purple ring is given by:

Probability = Number of favorable outcomes / Total number of possible outcomes.

So, the probability of getting a purple ring is:

7 (number of purple rings) / 38 (total number of rings) ≈ 0.184 (rounded to the nearest thousandth).

To know more about theoretical probability,

https://brainly.com/question/32085390

#SPJ11

Consider the function g defined by g(x, y) = = cos (πI√y) + 1 log3(x - y) Do as indicated. 3. In what direction does g have the maximum directional derivative at (x, y) = (4, 1)? What is the maximum directional derivative?

Answers

The direction of the maximum directional derivative at (4, 1) is in the x-axis direction, or horizontally. log(3) is the maximum directional derivative.

To find the direction of the maximum directional derivative of the function g(x, y) at the point (4, 1), we need to calculate the gradient of g at that point. The gradient will give us the direction of steepest ascent.

First, let's find the partial derivatives of g(x, y) with respect to x and y:

∂g/∂x = ∂/∂x [cos(πI√y) + 1 log3(x - y)]

= 1/(x - y) log(3)

∂g/∂y = ∂/∂y [cos(πI√y) + 1 log3(x - y)]

= -πI√y sin(πI√y)

Now, substitute the values (x, y) = (4, 1) into the partial derivatives:

∂g/∂x = 1/(4 - 1) log(3) = log(3)

∂g/∂y = -πI√1 sin(πI√1) = 0

The gradient vector ∇g(x, y) at (4, 1) is given by (∂g/∂x, ∂g/∂y) = (log(3), 0).

Since the partial derivative ∂g/∂y is zero, the maximum directional derivative will occur in the direction of the x-axis (horizontal direction).

The maximum directional derivative can be calculated by taking the dot product of the gradient vector and the unit vector in the direction of the maximum directional derivative. Since the direction is along the x-axis, the unit vector in this direction is (1, 0).

The maximum directional derivative is given by:

max directional derivative = ∇g(x, y) ⋅ (1, 0)

= (log(3), 0) ⋅ (1, 0)

= log(3) * 1 + 0 * 0

= log(3)

Therefore, the maximum directional derivative at (x, y) = (4, 1) is log(3).

To know more about directional derivative refer here-https://brainly.com/question/30365299#

#SPJ11

Suppose that a coin flipping four times, and let X represent the number of head that can
come up. Find:
1. probability function corresponding to the random variable X.
2. Find the cumulative distribution function for the random variable X.

Answers

To find the probability function and cumulative distribution function for the random variable X, which represents the number of heads that can come up when flipping a coin four times, we can analyze the possible outcomes and calculate their probabilities.

1. The probability function corresponds to the probabilities of each possible outcome. When flipping a coin four times, there are five possible outcomes for X: 0 heads, 1 head, 2 heads, 3 heads, and 4 heads. We can calculate the probabilities of these outcomes using the binomial distribution formula. The probability function for X is:

P(X = 0) = (1/2)^4

P(X = 1) = 4 * (1/2)^4

P(X = 2) = 6 * (1/2)^4

P(X = 3) = 4 * (1/2)^4

P(X = 4) = (1/2)^4

2. The cumulative distribution function (CDF) gives the probability that X takes on a value less than or equal to a certain number. To calculate the CDF for X, we need to sum up the probabilities of all outcomes up to a given value. For example:

CDF(X ≤ 0) = P(X = 0)

CDF(X ≤ 1) = P(X = 0) + P(X = 1)

CDF(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

CDF(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

CDF(X ≤ 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

By calculating the probabilities and cumulative probabilities for each outcome, we can obtain the probability function and cumulative distribution function for the random variable X in this coin-flipping scenario.

Learn more about cumulative distribution function (CDF) here:

https://brainly.com/question/31479018

#SPJ11

The function f has a Taylor series about x-1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, f(1) ==> ². f(n)(1) = ( − 1)~ (n − 1)! for n 22. 27 Which one of the following is the Taylor series of f(x) about x=1? (-1)n=0 2n! -(x-1)1+ Σ 1+ Σ 1+ O O O M8 Σ(-1) (x - 1)? n! (n −1)! (-1)(n-1)! (x-1)2n (-1)(x-1)n=1 Ž n=12n
Expert Answer

Answers

The correct answer is:
(-1)^(n-1)(x-1)^n/(n-1)!, where n ranges from 1 to infinity. The Taylor series of f(x) about x=1 is given by:


f(x) = Σ((-1)^(n-1)(x-1)^n)/(n-1)!, where n ranges from 1 to infinity.
We know that f(1) = 1, so we can plug in x=1 to the Taylor series to find the constant term:
f(1) = Σ((-1)^(n-1)(1-1)^n)/(n-1)!
1 = 0, since any term with (1-1)^n will be 0.
Next, we need to find the first few derivatives of f(x) evaluated at x=1:
f'(x) = Σ((-1)^(n-1)n(x-1)^(n-1))/(n-1)!
f''(x) = Σ((-1)^(n-1)n(n-1)(x-1)^(n-2))/(n-1)!
f'''(x) = Σ((-1)^(n-1)n(n-1)(n-2)(x-1)^(n-3))/(n-1)!
We can see a pattern emerging in the coefficients of the derivatives:
f^(n)(1) = (-1)^(n-1)(n-1)!
This matches the information given in the problem statement.
So, we can now plug in these derivatives to the Taylor series formula:
f(x) = f(1) + f'(1)(x-1) + f''(1)(x-1)^2/2! + f'''(1)(x-1)^3/3! + ...
f(x) = 1 + Σ((-1)^(n-1)n(x-1)^(n-1))/(n-1)! + Σ((-1)^(n-1)n(n-1)(x-1)^(n-2))/(n-1)! * (x-1)^2/2! + Σ((-1)^(n-1)n(n-1)(n-2)(x-1)^(n-3))/(n-1)! * (x-1)^3/3! + ...
Simplifying this expression, we get:
f(x) = Σ((-1)^(n-1)(x-1)^n)/(n-1)!, where n ranges from 1 to infinity.
This matches the Taylor series given in the answer choices. Therefore, the correct answer is:
(-1)^(n-1)(x-1)^n/(n-1)!, where n ranges from 1 to infinity.

To know more about Taylor visit:

https://brainly.com/question/31755153

#SPJ11

help with 14 & 16 please
Solve the problem. 14) The concentration of a certain drug in the bloodstream t minutes after swallowing a pill containing the drug can be approximated using the equation C(t) = (4t+1) -1/2, where C(t

Answers

The concentration of a certain drug in the bloodstream t minutes after swallowing a pill containing the drug can be approximated using the equation C(t) = (4t+1)^(-1/2), where C(t) represents the concentration.

To solve this problem, we need to find the time at which the concentration of the drug is maximum. This occurs when the derivative of C(t) is equal to zero.

First, let's find the derivative of C(t):

C'(t) = d/dt [(4t+1)^(-1/2)]

To simplify the differentiation, we can rewrite the equation as:

C(t) = (4t+1)^(-1/2) = (4t+1)^(-1/2 * 1)

Now, applying the chain rule, we differentiate:

C'(t) = -1/2 * (4t+1)^(-3/2) * d/dt (4t+1)

Simplifying further, we have:

C'(t) = -1/2 * (4t+1)^(-3/2) * 4

C'(t) = -2(4t+1)^(-3/2)

Learn more about approximated  here;

https://brainly.com/question/16315366

#SPJ11

7. Write the given system in matrix form: x = (2t)x + 3y y' = e'x + (cos(t))y

Answers

The matrix form of the given system as:
[x'] = [ (2t)  3 ] * [x]
[y']     [  e     cos(t) ]   [y]

The given system is:
x' = (2t)x + 3y
y' = ex + (cos(t))y

To write this system in matrix form, we need to express it as a product of matrices. The general form for a first-order linear system of equations in matrix form is:

[X'] = [A(t)] * [X]

where [X'] and [X] are column vectors representing the derivatives and variables, and [A(t)] is the coefficient matrix. In this case, we have:

[X'] = [x', y']^T
[X] = [x, y]^T

Now, we need to find the matrix [A(t)]. To do this, we write the coefficients of x and y in the given system as the elements of the matrix:

[A(t)] = [ (2t)  3 ]
             [  e     cos(t) ]

Now we can write the matrix form of the given system as:

[x'] = [ (2t)  3 ] * [x]
[y']     [  e     cos(t) ]   [y]

To learn more about matrix visit : https://brainly.com/question/11989522

#SPJ11

find the volume of the solid generated by revolving the region
about the y-axis #29
29. the region in the first quadrant bounded above by the parabola y = x2, below by the x-axis, and on the right by the line x = 2 1r and below by

Answers

The volume of the solid generated by revolving the region about the y-axis is (16/3)π * 2^(3/2) cubic units.

To find the volume of the solid generated by revolving the region about the y-axis, we can use the method of cylindrical shells.

The region in the first quadrant is bounded above by the parabola y = x^2, below by the x-axis, and on the right by the line x = 2.

We need to integrate the volume of each cylindrical shell from y = 0 to y = 2.

The radius of each cylindrical shell is the x-coordinate of the parabola, which is given by x = sqrt(y).

The height of each cylindrical shell is the difference between the right boundary x = 2 and the x-axis, which is 2.

Therefore, the volume of each cylindrical shell is given by:

V_shell = 2π * radius * height

= 2π * sqrt(y) * 2

To find the total volume, we integrate the volume of each cylindrical shell from y = 0 to y = 2:

V = ∫(0 to 2) 2π * sqrt(y) * 2 dy

Let's calculate this integral:

V = 2π * ∫(0 to 2) sqrt(y) * 2 dy

= 4π * ∫(0 to 2) sqrt(y) dy

= 4π * [2/3 * y^(3/2)] (0 to 2)

= 4π * (2/3 * 2^(3/2) - 2/3 * 0^(3/2))

= 4π * (2/3 * 2^(3/2))

= 8π * (2/3 * 2^(3/2))

= (16/3)π * 2^(3/2)

Therefore, the volume of the solid generated by revolving the region about the y-axis is (16/3)π * 2^(3/2) cubic units.

Learn more about volume of solid at https://brainly.com/question/31062027

#SPJ11

Use a triple integral to compute the exact volume of the solld enclosed by y = 93?, y=6, 2=0, x=0, and z = 10 - y in the first octant Volume = (Give an exact answer.)

Answers

The region enclosed by the planes y = 9, y = 6, x = 0, z = 0, and z = 10 - y in the first octant is a solid. A triple integral can be used to calculate the exact volume of this solid.

The region enclosed by the planes y = 9, y = 6, x = 0, z = 0, and z = 10 - y in the first octant is a solid. A triple integral can be used to calculate the exact volume of this solid. Solution:We integrate the given function over the volume of the solid. We will first examine the limits of the integral to set up the integral limits.\[\int_{0}^{6}\int_{0}^{\sqrt{y}}\int_{0}^{10-y}dzdxdy\]The integral limits have been set up. Now, we must integrate the integral in order to obtain the exact volume of the given solid. We now evaluate the innermost integral using the limits of integration.\[\int_{0}^{6}\int_{0}^{\sqrt{y}}10-ydxdy\]\[= \int_{0}^{6} (10y - \frac{y^2}{2})dy\]\[= [5y^2-\frac{y^3}{3}]_0^6\]\[= 90\]Therefore, the volume of the solid enclosed by the planes y = 9, y = 6, x = 0, z = 0, and z = 10 - y in the first octant is 90 cubic units.

learn more about integral here;

https://brainly.com/question/28328407?

#SPJ11

A product is introduced to the market. The weekly profit (in dollars) of that product decays exponentially 75000 e -0.04.x = . as function of the price that is charged (in dollars) and is given by P(x) Suppose the price in dollars of that product, x(t), changes over time t (in weeks) as given by x(t) = 55+0.95 - t² Find the rate that profit changes as a function of time, P'(t) -0.04(55+0.95t²) 5700te dollars/week How fast is profit changing with respect to time 4 weeks after the introduction. 1375.42 dollars/week

Answers

The profit is changing at a rate of approximately $1375.42 per week.

To calculate the rate of change of profit with respect to time, we first find the derivative of the profit function P(x) with respect to x. Taking the derivative of the given exponential function 75000e^(-0.04x), we get P'(x) = -3000e^(-0.04x).

Next, we find the derivative of the price function x(t) with respect to t. Taking the derivative of the given function 55 + 0.95t^2, we have x'(t) = -1.9t.

To determine the rate at which profit changes with respect to time, we multiply P'(x) and x'(t). Substituting the derivatives into the formula, we have P'(t) = P'(x) * x'(t) = (-3000e^(-0.04x)) * (-1.9t).

Finally, to find the rate at t = 4 weeks, we substitute t = 4 into P'(t). Evaluating P'(t) at t = 4, we get P'(4) = (-3000e^(-0.04x)) * (-1.9 * 4) = 1375.42 dollars/week (approximately).

Therefore, the profit is changing at a rate of approximately $1375.42 per week, four weeks after the introduction of the product.

Note: The calculation involves finding the derivatives of the profit function and the price function and then evaluating them at the given time. The negative sign in the derivative of the price function indicates a decrease in price over time, resulting in a negative sign in the rate of profit change.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Recall that a group is simple if it is a non-trivial group whose only normal subgroups are the trivial group
and the group itself.
(a) Prove that a group of order 126 cannot be simple.
(b) Prove that a group of order 1000 cannot be simple.

Answers

[tex]x^{-1[/tex]gx is in HK, which implies that g is in HK, a contradiction. Therefore, we conclude that G is not a simple group.

A simple group is a non-trivial group whose only normal subgroups are the trivial group and the group itself. For example, the group of prime order p is always a simple group since the only factors of p are 1 and p.

In this problem, we are required to show that a group of order 126 or 1000 is not a simple group.Proof: (a) We will use Sylow's theorems to prove that a group of order 126 is not a simple group. Let G be a group of order 126, and let p be a prime that divides 126.

Then by Sylow's theorem, G has a Sylow p-subgroup. Suppose that G is simple. Then by the Sylow's theorem, the number of Sylow p-subgroups is either 1 or a multiple of p. Since p divides 126, we conclude that the number of Sylow p-subgroups is either 1 or 7 or 21.

If there is only one Sylow p-subgroup, then it is normal, and we have a contradiction. Suppose that the number of Sylow p-subgroups is 7 or 21. Then each Sylow p-subgroup has order p^2, and their intersection is the trivial group. Moreover, the number of elements in G that are not in any Sylow p-subgroup is either 21 or 35. If there are 21 such elements, then they form a Sylow q-subgroup for some prime q that divides 126.

Since G is simple, this Sylow q-subgroup must be normal, which is a contradiction. If there are 35 such elements, then they form a Sylow r-subgroup for some prime r that divides 126. Again, this Sylow r-subgroup must be normal, which is a contradiction. Therefore, we conclude that a group of order 126 is not a simple group.Proof: (b) Let G be a group of order 1000. We will show that G is not a simple group. Suppose that G is simple. Then by Sylow's theorem, G has a Sylow p-subgroup for each prime p that divides 1000.

Moreover, the number of Sylow p-subgroups is congruent to 1 modulo p. Let n_p be the number of Sylow p-subgroups. Then n_2 is congruent to 1 modulo 2, and n_5 is congruent to 1 modulo 5. Also, we have n_2 * n_5 <= 8 since the number of elements in a Sylow 2-subgroup times the number of elements in a Sylow 5-subgroup is less than or equal to 1000. Hence, we have n_2 = 1, 5, or 25 and n_5 = 1 or 5. If n_5 = 5, then there are at least 25 elements of order 5 in G, which implies that there is a normal Sylow 5-subgroup in G.

Hence, we must have n_5 = 1. Similarly, we can show that n_2 = 1. Therefore, there is a unique Sylow 2-subgroup H of G and a unique Sylow 5-subgroup K of G. Moreover, HK is a subgroup of G since |HK| = |H| * |K| / |H ∩ K| = 40, which divides 1000. Let g be an element of G that is not in HK.

Learn more about contradiction :

https://brainly.com/question/32661834

#SPJ11

a. Problem 2 1. Find the components of each of the following vectors and their norms: The vector has the initial point A(1,2,3) and the final point C that is the midpoint of the line segment AB, where

Answers

The problem asks to find the components and norms of vectors given an initial point A(1, 2, 3) and the final point C, which is the midpoint of the line segment AB.

To determine the components of the vector, we subtract the coordinates of the initial point A from the coordinates of the final point C. This gives us the differences in the x, y, and z directions. To find the coordinates of point C, which is the midpoint of the line segment AB, we calculate the average of the x, y, and z coordinates of points A and B. This yields the midpoint coordinates (C).

Once we have the components of the vector and the coordinates of point C, we can calculate the norm (or magnitude) of the vector using the formula: norm = √(x^2 + y^2 + z^2). This involves squaring each component, summing them, and taking the square root of the result.

By finding the components and norms of the vectors, we can gain insight into their direction, length, and overall properties.

Learn more about vectors here: brainly.in/question/20737589
#SPJ11

(q5) Find the volume of the solid obtained by rotating the region under the curve y = 1 - x2 about the x-axis over the interval [0, 1].

Answers

The volume of the solid obtained by rotating the region under the curve y = 1 - x² about the x - axis over the interval [0, 1] is c.  8π/15 units cubed

What is a volume of rotation of curve?

The volume of rotation of a curve about the x- axis is given by V = ∫ₐᵇπy²dx on the interval [a, b]

Now, to find the volume of the solid obtained by rotating the region under the curve y = 1 - x² about the x - axis over the interval [0, 1], we proceed as follows

Since the volume of rotation is V = ∫ₐᵇπy²dx where [a,b] = [0,1].

Substituting y into the equation, we have that

V = ∫ₐᵇπy²dx

V = ∫₀¹π(1 - x²)²dx

Expanding the bracket, we have that

V = ∫₀¹π[1² - 2(x²) + (x²)²]dx

V = ∫₀¹π[1 - 2x² + x⁴]dx

V = π[∫₀¹1dx - ∫₀¹2x²dx + ∫₀¹x⁴]dx

V = π{[x]₀¹ - 2[x³/3]₀¹ + [x⁵/5]₀¹}

V = π{[1 - 0] - 2[1³/3 - 0³/3] + [1⁵/5 - 0⁵/5]}

V = π{[1 - 0] - 2[1/3 - 0/3] + [1/5 - 0/5]}

V = π{[1] - 2[1/3 - 0] + [1/5 - 0]}

V = π{1 - 2[1/3] + [1/5]}

Taking L.C.M, we have that

V = π{(15 - 10 + 3)/15}

V = π{(5 + 3)/15}

V = π8/15

V = 8π/15 units cubed

So, the volume is c.  8π/15 units cubed

Learn more about volume of rotation of curve here:

https://brainly.com/question/32414687

#SPJ1

decimal numbers are written by putting digits into place-value columns that are separated by a decimal point. express the place value of each of the columns shown using a power of 10.
Hundreds:
Tens:
Ones:
Tenths:
Hundreths:
Thousandts:
Ten-thousandts:

Answers

The place value of each of the columns shown using a power of 10 is expressed as;

Hundreds: 10² = (100)

Tens: 10¹ = (10)

Ones: 10° =  (1)

Tenths: 10⁻¹ = (0.1)

Hundredths: 10⁻² = (0.01)

Thousandths: 10⁻³ =  (0.001)

Ten-thousandths: 10⁻⁴ = (0.0001)

What are decimal numbers?

A decimal is simply described as a number that is made up of a whole and a fractional part.

Decimal numbers are numbers that lie in- between integers and represent numerical value.

Also note that place value of numbers is described as the value of numbers based on their position.

For example: The place value of 2 in 0. 002 is the thousandth

Learn more about decimals at: https://brainly.com/question/28393353

#SPJ4

usk FOUR EXPANSION Show all тачила Мягкая for your волмаса TERMS F(x) = ²x 1 work TO FIND OF THE TAYLER centoul THE FIRST SERVED at x = 0

Answers

This type of depends on the concept of Taylor’s series expansion of a function at a particular point.

We know that the Taylor’s series expands any function till an infinite sum of terms which are expressed in terms of the derivatives of the function at a point. We know that the Taylor’s series expansion of a function centered at x=0

is known as Maclaurin’s series. The general formula for Maclaurin’s series is f(x)=∑n=0∞fn(0)xnn!

Complete step by step solution:

Now, we have to find Taylor’s series expansion of e−2x

centered at x=0

.

We know that Taylor’s series expansion at x=0

is known as Maclaurin’s series which is given by,

⇒f(x)=∑n=0∞fn(0)x n n!

Learn more about Taylor’s series here:

https://brainly.com/question/32235538

#SPJ11

Select all that apply. Which of the following ratios are equivalent to 2:3?

12 to 36
6 to 9
8:12
16 to 20

Answers

The ratios that are equivalent to 2:3 are:

6 to 9

8 to 12

To determine which of the given ratios are equivalent to 2:3, we need to simplify each ratio and check if they result in the same reduced form.

12 to 36:

To simplify this ratio, we can divide both terms by their greatest common divisor, which is 12:

12 ÷ 12 = 1

36 ÷ 12 = 3

The simplified ratio is 1:3, which is not equivalent to 2:3.

6 to 9:

To simplify this ratio, we can divide both terms by their greatest common divisor, which is 3:

6 ÷ 3 = 2

9 ÷ 3 = 3

The simplified ratio is 2:3, which is equivalent to 2:3.

8 to 12:

To simplify this ratio, we can divide both terms by their greatest common divisor, which is 4:

8 ÷ 4 = 2

12 ÷ 4 = 3

The simplified ratio is 2:3, which is equivalent to 2:3.

16 to 20:

To simplify this ratio, we can divide both terms by their greatest common divisor, which is 4:

16 ÷ 4 = 4

20 ÷ 4 = 5

The simplified ratio is 4:5, which is not equivalent to 2:3.

For similar questions on ratios

https://brainly.com/question/12024093

#SPJ8

find the volume v of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 4 sec(x), y = 6, − 3 ≤ x ≤ 3 ; about y = 4

Answers

The centroid of the region bounded by the curves y = 2 sin(3x), y = 2 cos(3x), x = 0, and x = 12 is approximately (x, y) = (6, 0).

To find the centroid of the region bounded by the given curves, we need to determine the x-coordinate (x-bar) and y-coordinate (y-bar) of the centroid. The x-coordinate of the centroid is given by the formula:

x-bar = (1/A) * ∫[a,b] x * f(x) dx,

where A represents the area of the region and f(x) is the difference between the upper and lower curves.

Similarly, the y-coordinate of the centroid is given by:

y-bar = (1/A) * ∫[a,b] 0.5 * [f(x)]^2 dx,

where 0.5 * [f(x)]^2 represents the squared difference between the upper and lower curves.

Integrating these formulas over the given interval [0, 12] and calculating the areas, we find that the x-coordinate (x-bar) of the centroid is equal to 6, while the y-coordinate (y-bar) evaluates to 0.

Therefore, the centroid of the region is approximately located at (x, y) = (6, 0).

Learn more about centroid here:

https://brainly.com/question/29756750

#SPJ11

(q18) Determine c such that f(c) is the average value of the function
on the interval [0, 2].

Answers

The correct option is for the value of c,  such that f(c) is the average value of the function on the interval [0, 2], is D.

How to find the value of c?

The average value of a function on an interval [a, b] is given by:

R = (f(b) - f(a))/(b - a)

Here the interval is [0, 2], then:

f(2) = √(2 + 2) = 2

f(0) = √(0 + 2) = √2

Then here we need to solve the equation:

√(c + 2) = (f(2) - f(0))/(2 - 0)

√(c + 2) = (2 + √2)/2

Solving this for c, we will get:

c = [ (2 + √2)/2]² - 2

c = 0.9

Them tjhe correct option is D.

Learn more about average value:

https://brainly.com/question/130657

#SPJ1

Complete the following steps for the given function, interval, and value of n a. Sketch the graph of the function on the given interval b. Calculate Ax and the grid points x X₁. x c. Illustrate the left and right Riemann sums, and determine which Riemann sum underestimates and which sum overestimates the area under the curve. d. Calculate the left and right Riemann sums. f(x) -2x2+5 on [1,6]: n5 a. Sketch the graph of f(x) 2x2 +5 on the interval [1, 6].

Answers

The left Riemann sum underestimates the area under the curve, while the right Riemann sum overestimates it.

a. To sketch the graph of f(x) = -2x² + 5 on the interval [1, 6], plot the points on the coordinate plane by evaluating the function at various x-values within the interval.

b. To calculate Δx, divide the length of the interval by the number of subintervals (n). Determine the grid points x₁, x₂, ..., xₙ by adding Δx to the starting point (1) for each subinterval.

c. To illustrate the left and right Riemann sums, evaluate the function at the left endpoints (left Riemann sum) and right endpoints (right Riemann sum) of each subinterval. The left Riemann sum underestimates the area under the curve, while the right Riemann sum overestimates it.

d. To calculate the left and right Riemann sums, sum up the areas of the rectangles formed by the function values and the corresponding subintervals. The left Riemann sum is obtained by multiplying the function value at each left endpoint by Δx and summing them up. The right Riemann sum is obtained by multiplying the function value at each right endpoint by Δx and summing them up.

It's important to note that without specific values for n and the interval [1, 6], the numerical calculations and further analysis cannot be provided.

Learn more about Riemann here:

https://brainly.com/question/25828588

#SPJ11




9. Find the local minimum and the local maximum values of the function f(x) = x3 – 3x2 +1 (12pts) 10. If 2x = f(x) = x4 – x2 +2 for all x, evaluate lim f(x) (8pts ) 1

Answers

The local minimum is -3 and the local maximum is 1 for the function f(x) = x³ - 3x² + 1.

To find the local minimum and local maximum values of the function f(x) = x³ - 3x² + 1, we need to find the critical points of the function first.

Step 1: Find the derivative of the function f(x):

f'(x) = 3x² - 6x

Step 2: Set the derivative equal to zero and solve for x to find the critical points:

3x² - 6x = 0

3x(x - 2) = 0

From this equation, we can see that x = 0 and x = 2 are the critical points.

Step 3: Determine the nature of the critical points by analyzing the second derivative:

f''(x) = 6x - 6

For x = 0:

f''(0) = 6(0) - 6 = -6

Since f''(0) is negative, the critical point x = 0 is a local maximum.

For x = 2:

f''(2) = 6(2) - 6 = 6

Since f''(2) is positive, the critical point x = 2 is a local minimum.

Therefore, the local minimum occurs at x = 2 with the value:

f(2) = (2)³ - 3(2)² + 1

= 8 - 12 + 1

= -3

The local maximum occurs at x = 0 with the value:

f(0) = (0)³ - 3(0)² + 1

= 0 - 0 + 1

= 1

Thus, the local minimum is -3 and the local maximum is 1 for the function f(x) = x³ - 3x² + 1.

To know more about local maximum check the below link:

https://brainly.com/question/11894628

#SPJ4

Consider the joint PDF of two random variables X, Y given by fX,Y(x,y)=c, where 0≤x≤a where a=5.18, and 0≤y≤4.83. Find fX(a2).

Answers

The value of [tex]\(f_X(a^2)\)[/tex] is [tex]\(c \cdot 4.83\)[/tex].

To find [tex]\(f_X(a^2)\),[/tex] we need to integrate the joint PDF [tex]\(f_{X,Y}(x,y)\)[/tex] over the range where \(X\) takes the value \(a^2\)

Given that [tex]\(f_{X,Y}(x,y) = c\)[/tex] for [tex]\(0 \leq x \leq a = 5.18\)[/tex] and [tex]\(0 \leq y \leq 4.83\)[/tex], we can write the integral as follows:

[tex]\[f_X(a^2) = \int_{0}^{4.83} f_{X,Y}(a^2, y) \, dy\][/tex]

Since [tex]\(f_{X,Y}(x,y)\)[/tex] is constant within the given range, we can pull it out of the integral:

[tex]\[f_X(a^2) = c \int_{0}^{4.83} \, dy\][/tex]

Evaluating the integral:

[tex]\[f_X(a^2) = c \cdot [y]_{0}^{4.83}\][/tex]

[tex]\[f_X(a^2) = c \cdot (4.83 - 0)\][/tex]

[tex]\[f_X(a^2) = c \cdot 4.83\][/tex]

Hence, the value of [tex]\(f_X(a^2)\)[/tex] is [tex]\(c \cdot 4.83\)[/tex].

Integral is defined as being, containing, or having to do with one or more mathematical integers. (2) pertaining to or having to do with mathematical integration or the outcomes thereof. generated in concert with another component. a chair with a built-in headrest.

To learn more about integral from the given link

https://brainly.com/question/30094386

#SPJ4

Lois thinks that people living in a rural environment have a healthier lifestyle than other people. She believes the average lifespan in the USA is 77 years. A random sample of 20 obituaries from newspapers from rural towns in Idaho give x = 80.63 and s = 1.87. Does this sample provide evidence that people living in rural Idaho communities live longer than 77 years? Assume normality. (a) State the null and alternative hypotheses: (Type "mu" for the symbol mu > e.g. mu >|1 for the mean is greater than 1. mu <] 1 for the mean is less than 1, mu not = 1 for the mean is not equal to 1) H_0: H_a:

Answers

The null hypothesis (H₀) states that people living in rural Idaho communities have an average lifespan of 77 years or less, while the alternative hypothesis (Hₐ) suggests that their average lifespan exceeds 77 years.

In this scenario, the null hypothesis (H₀) assumes that the average lifespan of people in rural Idaho communities is 77 years or lower. On the other hand, the alternative hypothesis (Hₐ) proposes that their average lifespan is greater than 77 years. The random sample of 20 obituaries from rural towns in Idaho provides data with a sample mean (x) of 80.63 and a sample standard deviation (s) of 1.87. To determine if this sample provides evidence to support the alternative hypothesis, further statistical analysis needs to be conducted, such as hypothesis testing or confidence interval estimation.

Learn more about null hypothesis here:

https://brainly.com/question/27335001

#SPJ11




Find the radius of convergence and interval of convergence of the series. TRO Š (-1)-- n3 112

Answers

The series [tex]\sum_{}^}((-1)^n * (n^3) / (112^n))[/tex] has a radius of convergence of 112, and the interval of convergence cannot be determined without knowing the center.

To find the radius of convergence and interval of convergence of the series, we'll use the ratio test.

The series in question is ∑((-1)^n * (n^3) / (112^n)), where n starts from 0.

Using the ratio test, we'll evaluate the limit:

[tex]L = lim(n\rightarrow \infty) |((-1)^(n+1) * ((n+1)^3) / (112^(n+1)))| / |((-1)^n * (n^3) / (112^n))|[/tex]

Simplifying the expression:

L = [tex]lim(n\rightarrow \infty) |(-1) * (n+1)^3 / (n^3) * (112^n / 112^(n+1))|[/tex]

[tex]L = lim(n \rightarrow\infty) |-1 * (n+1)^3 / (n^3) * (112^n / (112^n * 112^1))|[/tex]

[tex]L = lim(n\rightarrow\infty) |-1 * (n+1)^3 / (n^3) * (1 / 112)|[/tex]

[tex]L = (1 / 112) * lim(n\rightarrow\infty) |(n+1)^3 / (n^3)|[/tex]

Taking the limit:

[tex]L = (1 / 112) * lim(n\rightarrow\infty) (n+1)^3 / n^3[/tex]

Expanding and simplifying the expression:

[tex]L = (1 / 112) * lim(n \rightarrow\infty) (n^3 + 3n^2 + 3n + 1) / n^3[/tex]

[tex]L = (1 / 112) * lim(n \rightarrow\infty) (1 + 3/n + 3/n^2 + 1/n^3)[/tex]

As n approaches infinity, the terms with 1/n^2 and 1/n^3 tend to zero. Therefore, the limit simplifies to:

L = (1 / 112) * (1 + 0 + 0 + 0)

L = 1 / 112

Since L < 1, the series converges.

By the ratio test, we know that for a convergent series, the radius of convergence (R) is given by:

R = 1 / L

R = 1 / (1 / 112)

R = 112

So, the radius of convergence is 112.

The interval of convergence is the range of x values for which the series converges.

Since the radius of convergence is 112, the series converges for values of x within a distance of 112 units from the center of the series. The center of the series is not provided in the question, so the interval of convergence cannot be determined without knowing the center.

Learn more about interval in:

brainly.com/question/13708942

#SPJ4

Other Questions
Find the area between f(x) = -2x + 4 and g(x) = { x-1 from x=-1 tox=1 Consider the ordered bases B = {1,x, x2} and C = {1, (x 1), (x 1)2} for P2. x( (a) Find the transition matrix from C to B. (b) Find the transition matrix from B to C. (c)" What does the word verified mean in paragraph 6?A proved to be trueB copied over againC developed in detailD carefully reviewed For each vertical motion model, identify the maximum height (in feet) reached by the object and the amount of time for the object to reach the maximum heighta. h(t)=-16+200t+25b. h(t)=-16r+36t+4(Simplify your answer. Type an integer or a decimal)The object reaches the maximum height in(Round to two decimal places as needed.) a factory worked pushes a 35.0 kg crate a distance of 4.7m along a level floor at constant velocity by pushing horizontally on it. the coefficient of kinetic friction between the crate and the floor is 0.32. a) what magnitude of force must the worker apply? A painting is being re-created in text form what would be most likely be different or added in the new medium write the given third order linear equation as an equivalent system of first order equations with initial values. It is currently theorized that training with heavy loads causes A. greater growth of type I fibers. B. greater growth of type II fibers. C. selective growth of type II fibers. D. equal growth of type I and type II fibers. To be a member of a dance company, you must pay a flat monthly fee and then a certain amount of money per lesson. If a member has 7 lessons in a month and pays $82 and another member has 11 lessons in a month and pays $122: a) Find the linear equation for the monthly cost of a member as a function of the number of lessons they have. b) Use the equation to find the total monthly cost is a member wanted 16 lessons. Math 6 Fresno State c) How many lessons did a member have if their cost was $142? generally speaking most industries do not possess advanced technologies. T/F pls help read bellow & answer A wheel makes 30 revolutions per min. How many revolutions does it make per second? 1000 ml of a gas at 15 atm is compressed to 500 ml. what is its new pressure? Which of the following is the product of the photoisomerization reaction of the following compound upon exposure to light?a) the same compoundb) a different isomer of the same compoundc) a completely different compound suppose f belongs to aut(zn) and a is relatively prime to n. if f(a) 5 b, determine a formula for f(x). Calculate the average binding energy per nucleon of 24/12Mg.Answer in units of MeV/nucleon. Customer analytics provides what missing link for understanding customers? a. classification b. analysis c. interaction d. prediction. d. prediction. What is an approved material for structural firefighting boots? The marginal profit (in thousands of dollars per unit) from the sale of a certain video game console is given by:P'(x) = 1.8x(x^2 + 27,000)^-2/3The profit from 150 units is $32,000.a. Find the profit function.b. What is the profit from selling 250 units?c. How many units must be sold to produce a profit of at least $100,000? yassar, a dna analyst at a state crime lab, faces a constant backlog of work. what is a likely cause?