DETAILS MY NOTES ASK YOUR TEACHER The water level (in feet) in a harbor during a certain 24-hr period is approximated by the function H(t) = 3.7 cos (t - 11) + 7.1 (Osts 24) 6 at time t (in hours) (t = 0 corresponds to 12 midnight). [t )] (a) Find the rate of change of the water level at 3 A.M. Round your answer to four decimal places, if necessary. --Select--- (b) Find the water level at 3 A.M. Round your answer to four decimal places, if necessary. ---Select---

Answers

Answer 1

The rate of change of the water level at 3 A.M. is approximately 2.8259 feet per hour and the water level at 3 A.M. is approximately 10.8259 feet.

(a) To find the rate of change of the water level at 3 A.M., we need to find H'(3).

H(t) = 3.7 cos (t - 11) + 7.1

Taking the derivative of H(t) with respect to t, we get:

H'(t) = -3.7 sin (t - 11)

Substituting t = 3, we get:

H'(3) = -3.7 sin (3 - 11)

H'(3) ≈ 2.8259 feet per hour

Therefore, the rate of change of the water level at 3 A.M. is approximately 2.8259 feet per hour.

(b) To find the water level at 3 A.M., we need to find H(3).

H(t) = 3.7 cos (t - 11) + 7.1

Substituting t = 3, we get:

H(3) = 3.7 cos (3 - 11) + 7.1

H(3) ≈ 10.8259 feet

Therefore, the water level at 3 A.M. is approximately 10.8259 feet.

To know more about rate of change refer here:

https://brainly.com/question/29181688#

#SPJ11


Related Questions

show work
Differentiate (find the derivative). Please use correct notation. 6 f(x) = (2x¹-7)³ y = e²xx² f(x) = (ln(x + 1)) look carefully at the parentheses! -1))4 € 7. (5 pts each) a) b)

Answers

The derivatives of the given functions are as follows:

a) f'(x) = 6(2x¹-7)²(2) - 1/(x + 1)²

b) f'(x) = 12x(e²x²) + 2e²x²

a) To find the derivative of f(x) = (2x¹-7)³, we apply the power rule for differentiation. The power rule states that if we have a function of the form (u(x))^n, where u(x) is a differentiable function and n is a constant, the derivative is given by n(u(x))^(n-1) multiplied by the derivative of u(x). In this case, u(x) = 2x¹-7 and n = 3.

Taking the derivative, we have f'(x) = 3(2x¹-7)²(2x¹-7)' = 6(2x¹-7)²(2), which simplifies to f'(x) = 12(2x¹-7)².

For the second part of the question, we need to find the derivative of y = e²xx². Here, we have a product of two functions: e²x and x². To differentiate this, we can use the product rule, which states that the derivative of a product of two functions u(x) and v(x) is given by u'(x)v(x) + u(x)v'(x).

Applying the product rule, we find that y' = (2e²x²)(x²) + (e²x²)(2x) = 4xe²x² + 2x²e²x², which simplifies to y' = 12x(e²x²) + 2e²x².

In the final part, we need to differentiate f(x) = (ln(x + 1))⁴. Using the chain rule, we differentiate the outer function, which is (ln(x + 1))⁴, and then multiply it by the derivative of the inner function, which is ln(x + 1). The derivative of ln(x + 1) is 1/(x + 1). Thus, applying the chain rule, we have f'(x) = 4(ln(x + 1))³(1/(x + 1)) = 4(ln(x + 1))³/(x + 1)².

In summary, the derivatives of the given functions are:

a) f'(x) = 6(2x¹-7)²(2) - 1/(x + 1)²

b) f'(x) = 12x(e²x²) + 2e²x²

c) f'(x) = 4(ln(x + 1))³/(x + 1)².

Learn more about derivatives here:

https://brainly.com/question/29020856

#SPJ11

Find the least integer n such that f(x) is 0(x") for each of these functions. a) f(x) = 2x3 + x² logx b) f(x) = 3x3 + (log x) c) f(x) = (x+ + x2 + 1)/(x3 + 1) d) f(x) = (x+ + 5 log x)/(x+

Answers

we can say that functions (a) and (b) are the functions whose least integer n such that f(x) is 0(xⁿ) is 3.

Given functions:

a) f(x) = 2x³ + x²logxb) f(x) = 3x³ + (log x)c) f(x) = (x² + x² + 1)/(x³ + 1)d) f(x) = (x² + 5log x)/(x³ + x)

For a function to be 0 (xⁿ), where n is a natural number, the highest power of x must be n.

Therefore, we need to identify the degree of each function: a) f(x) = 2x³ + x²logx

Here, the degree of the function is 3. Hence, n = 3.

Therefore, f(x) is 0(x³)

b) f(x) = 3x³ + (log x)

The degree of the function is 3. Hence, n = 3. Therefore, f(x) is 0(x³)

c) f(x) = (x² + x² + 1)/(x³ + 1)

The degree of the function in the numerator is 2.

The degree of the function in the denominator is 3.

Therefore, the degree of the function is less than 3. Hence, we cannot express it as 0(xⁿ).

d) f(x) = (x² + 5log x)/(x³ + x)

The degree of the function in the numerator is 2.

The degree of the function in the denominator is 3.

Therefore, the degree of the function is less than 3. Hence, we cannot express it as 0(xⁿ).

To learn more about function click here https://brainly.com/question/31062578

#SPJ11

2. Given initial value problem { vio="+ 57100 " 5y = y(0) = 3 & y'(0) = 1 (a) Solve the initial value problem. = (b) Write the solution in the format y = A cos(wt – °) (c) Find the amplitude & peri

Answers

(a) y = -285500 + 285503e^(1/5y)

(b) The solution in the desired format is: y = A cos(wt - φ) - 285500

(c) The amplitude of the solution is 285503, and the period is 10π.

To solve the given initial value problem { vio="+ 57100 " 5y = y(0) = 3 & y'(0) = 1, let's go through each step.

(a) Solve the initial value problem:

The given differential equation is 5y = y' + 57100. To solve this, we'll first find the general solution by rearranging the equation:

5y - y' = 57100

This is a first-order linear ordinary differential equation. We can solve it by finding the integrating factor. The integrating factor is given by e^(∫-1/5dy) = e^(-1/5y). Multiplying the integrating factor throughout the equation, we get:

e^(-1/5y) * (5y - y') = e^(-1/5y) * 57100

Now, we can simplify the left-hand side using the product rule:

(e^(-1/5y) * 5y) - (e^(-1/5y) * y') = e^(-1/5y) * 57100

Differentiating e^(-1/5y) with respect to y gives us -1/5 * e^(-1/5y). Therefore, the equation becomes:

5e^(-1/5y) * y - e^(-1/5y) * y' = e^(-1/5y) * 57100

Now, we can rewrite the equation as a derivative of a product:

(d/dy) [e^(-1/5y) * y] = 57100 * e^(-1/5y)

Integrating both sides with respect to y, we have:

∫(d/dy) [e^(-1/5y) * y] dy = ∫57100 * e^(-1/5y) dy

Integrating the left-hand side gives us:

e^(-1/5y) * y = ∫57100 * e^(-1/5y) dy

To find the integral on the right-hand side, we can make a substitution u = -1/5y. Then, du = -1/5 dy, and the integral becomes:

∫-5 * 57100 * e^u du = -285500 * ∫e^u du

Integrating e^u with respect to u gives us e^u, so the equation becomes:

e^(-1/5y) * y = -285500 * e^(-1/5y) + C

Multiplying through by e^(1/5y), we get:

y = -285500 + Ce^(1/5y)

To find the constant C, we'll use the initial condition y(0) = 3. Substituting y = 3 and solving for C, we have:

3 = -285500 + Ce^(1/5 * 0)

3 = -285500 + C

Therefore, C = 285503. Substituting this back into the equation, we have:

y = -285500 + 285503e^(1/5y)

(b) Write the solution in the format y = A cos(wt – φ):

To write the solution in the desired format, we need to manipulate the equation further. We'll rewrite the equation as:

y + 285500 = 285503e^(1/5y)

Let A = 285503 and w = 1/5. The equation becomes:

y + 285500 = Ae^(wt)

Since e^(wt) = cos(wt) + i sin(wt), we can write the equation as:

y + 285500 = A(cos(wt) + i sin(wt))

Now, we'll convert this equation to the desired format by using Euler's formula: e^(iθ) = cos(θ) + i sin(θ). Let φ be the phase shift such that wt - φ = θ. The equation becomes:

y + 285500 = A(cos(wt - φ) + i sin(wt - φ))

Since y is a real-valued function, the imaginary part of the equation must be zero. Therefore, we can ignore the imaginary part and write the equation as:

y + 285500 = A cos(wt - φ)

So, the solution in the desired format is:

y = A cos(wt - φ) - 285500

(c) Find the amplitude and period:

From the equation y = A cos(wt - φ) - 285500, we can see that the amplitude is |A| (absolute value of A) and the period is 2π/w.

In our case, A = 285503 and w = 1/5. Therefore, the amplitude is |285503| = 285503, and the period is 2π / (1/5) = 10π.

Hence, the amplitude of the solution is 285503, and the period is 10π.

To know more about amplitude, visit the link : https://brainly.com/question/3613222

#SPJ11

in a highly academic suburban school system, 45% of the girls and 40% of the boys take advanced placement classes. there are 2200 girls practice exam 1 section i 311 5 1530-13th-part iv-exam 1.qxd 11/21/03 09:35 page 311 and 2100 boys enrolled in the high schools of the district. what is the expected number of students who take advanced placement courses in a random sample of 150 students?

Answers

The expected number of students who take advanced placement courses in a random sample of 150 students, in a highly academic suburban school system where 45% of girls and 40% of boys take advanced placement classes, is approximately 127 students.

In a highly academic suburban school system, where 45% of girls and 40% of boys take advanced placement classes, the expected number of students who take advanced placement courses in a random sample of 150 students can be calculated by multiplying the probability of a student being a girl or a boy by the total number of girls and boys in the sample, respectively.

To find the expected number of students who take advanced placement courses in a random sample of 150 students, we first calculate the expected number of girls and boys in the sample.

For girls, the probability of a student being a girl is 45%, so the expected number of girls in the sample is 0.45 multiplied by 150, which gives us 67.5 girls.

For boys, the probability of a student being a boy is 40%, so the expected number of boys in the sample is 0.40 multiplied by 150, which gives us 60 boys.

Next, we add the expected number of girls and boys in the sample to get the total expected number of students who take advanced placement courses. Adding 67.5 girls and 60 boys, we get 127.5 students.

Since we can't have a fraction of a student, we round down the decimal to the nearest whole number. Therefore, the expected number of students who take advanced placement courses in a random sample of 150 students is 127 students.

Learn more about probability here: https://brainly.com/question/31828911

#SPJ11

solve the system dx/dt = [6,-2;20,-6]x with x(0) = [-2;2] give your solution in real form x1 = x2 = and describe the trajectory

Answers

In this case, since the eigenvalue λ2 = 4 is positive, the solution decays exponentially towards the origin along the line defined by the eigenvector [1; 1].

To solve the system dx/dt = [6, -2; 20, -6]x with x(0) = [-2; 2], we can find the eigenvalues and eigenvectors of the coefficient matrix [6, -2; 20, -6]. Let's denote the coefficient matrix as A.

The characteristic equation of A is given by det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix. So we have:

|6 - λ, -2|

|20, -6 - λ| = 0

Expanding the determinant, we get:

(6 - λ)(-6 - λ) - (-2)(20) = 0

(λ - 2)(λ - 4) = 0

Solving for λ, we find two eigenvalues: λ1 = 2 and λ2 = 4.

To find the corresponding eigenvectors, we substitute each eigenvalue back into the equation (A - λI)v = 0 and solve for v. Let's find the eigenvectors for each eigenvalue.

For λ1 = 2:

(A - 2I)v1 = 0

|4, -2|v1 = 0

|20, -8|v1 = 0

Simplifying, we get the equation 4v1 - 2v2 = 0, which gives us v1 = v2.

For λ2 = 4:

(A - 4I)v2 = 0

|2, -2|v2 = 0

|20, -10|v2 = 0

Simplifying, we get the equation 2v1 - 2v2 = 0, which gives us v1 = v2.

So, the eigenvectors for both eigenvalues are v = [1; 1].

Now we can express the general solution of the system as:

x(t) = c1 * e^(λ1 * t) * v1 + c2 * e^(λ2 * t) * v2

Substituting the values, we have:

x(t) = c1 * e^(2t) * [1; 1] + c2 * e^(4t) * [1; 1]

Since x(0) = [-2; 2], we can solve for the constants c1 and c2. Plugging t = 0 into the equation, we get:

[-2; 2] = c1 * e^0 * [1; 1] + c2 * e^0 * [1; 1]

[-2; 2] = c1 * [1; 1] + c2 * [1; 1]

[-2; 2] = [c1 + c2; c1 + c2]

From the first component of the vector equation, we have -2 = c1 + c2.

From the second component of the vector equation, we have 2 = c1 + c2.

Solving these equations, we find c1 = 0 and c2 = -2.

Therefore, the particular solution to the system dx/dt = [6, -2; 20, -6]x with x(0) = [-2; 2] is:

x(t) = -2 * e^(4t) * [1; 1]

The trajectory of the solution represents a line in the direction of the eigenvector [1; 1], with exponential growth/decay based on the eigenvalues.

To know more about eigenvalue visit:

brainly.com/question/14415841

#SPJ11

Find and simplify the derivative of the following function. f(x)=2x4 (3x² - 1) - The derivative of f(x) = 2x4 (3x² - 1) is - (Type an exact answer.)

Answers

The derivative of[tex]f(x) = 2x^4 (3x^2 - 1) is 72x^5 - 8x^3.[/tex]

Start with the function [tex]f(x) = 2x^4 (3x^2 - 1).[/tex]

Apply the product rule to differentiate the function.

Using the product rule, differentiate the first term[tex]2x^4 as 8x^3[/tex] and keep the second term ([tex]3x^2 - 1[/tex]) as it is.

Next, keep the first term [tex]2x^4[/tex]as it is and differentiate the second term [tex](3x^2 - 1)[/tex] using the power rule, resulting in 6x^2.

Combine the differentiated terms to obtain the derivative: [tex]8x^3 * (3x^2 - 1) + 2x^4 * 6x^2.[/tex]

Simplify the expression:[tex]24x^5 - 8x^3 + 12x^6.[/tex]

The simplified derivative of f(x) is [tex]72x^5 - 8x^3.[/tex]

learn more about :-derivatives here

https://brainly.com/question/29020856

#SPJ11

which expression completes the identity of sin u cos v

Answers

To complete the identity of sin u cos v, we can use the trigonometric identity:

sin(A + B) = sin A cos B + cos A sin B

By comparing this identity to sin u cos v, we can see that the expression that completes the identity is sin(u + v).

Therefore, the expression that completes the identity of sin u cos v is sin(u + v).

Use Laplace transforms to solve the differential equations: day given y(0) = -and y'(0) = 45 - 3

Answers

To solve the given differential equations using Laplace transforms, we need to apply the Laplace transform to both sides of the equations. By transforming the differential equations into algebraic equations in the Laplace domain and using the initial conditions, we can find the Laplace transforms of the unknown functions. Then, by taking the inverse Laplace transform, we obtain the solutions in the time domain.

Let's denote the unknown function as Y(s) and its derivative as Y'(s). Applying the Laplace transform to the given differential equations, we have sY(s) - y(0) = -3sY(s) + 45 - 3. Using the initial conditions y(0) = -2 and y'(0) = 45 - 3, we substitute these values into the Laplace transformed equations. After rearranging the equations, we can solve for Y(s) and Y'(s) in terms of s. Next, we take the inverse Laplace transform of Y(s) and Y'(s) to obtain the solutions y(t) and y'(t) in the time domain.

To know more about Laplace transforms here: brainly.com/question/31040475

#SPJ11

find a polynomial function f(x) of least degree having only real coefficients and zeros as given. assume multiplicity 1 unless otherwise stated.

Answers

a polynomial function f(x) of least degree with real coefficients and the given zeros (1 with multiplicity 1, 2 with multiplicity 2, and i) is:

f(x) = x^5 - 5x^4 + 9x^3 - 8x^2 + 4x - 4.

To find a polynomial function f(x) of the least degree with real coefficients and given zeros, we can use the fact that if a is a zero of a polynomial with real coefficients, then its conjugate, denoted by a-bar, is also a zero.

Let's consider an example with given zeros:

Zeros:

1 (multiplicity 1)

2 (multiplicity 2)

i (complex zero)

Since we want a polynomial with real coefficients, we need to include the conjugate of the complex zero i, which is -i.

To obtain a polynomial function with the given zeros, we can write it in factored form as follows:

f(x) = (x - 1)(x - 2)(x - 2)(x - i)(x + i)

Now we simplify this expression:

f(x) = (x - 1)(x - 2)^2(x^2 - i^2)

Since i^2 = -1, we can simplify further:

f(x) = (x - 1)(x - 2)^2(x^2 + 1)

Expanding this expression:

f(x) = (x - 1)(x^2 - 4x + 4)(x^2 + 1)

Multiplying and combining like terms:

f(x) = (x^3 - 4x^2 + 4x - x^2 + 4x - 4)(x^2 + 1)

Simplifying:

f(x) = (x^3 - 5x^2 + 8x - 4)(x^2 + 1)

Expanding again:

f(x) = x^5 - 5x^4 + 8x^3 - 4x^2 + x^3 - 5x^2 + 8x - 4x + x^2 - 4

Combining like terms:

f(x) = x^5 - 5x^4 + 9x^3 - 8x^2 + 4x - 4

to know more about polynomial visit:

brainly.com/question/11536910

#SPJ11

At which WS ( workstation) is the person facing south easterly direction?

Answers

Answer:

Step-by-step explanation:

Consider the polynomials bk(x) := (1 – x)*211- for k 0,1,...,11, and let B {bo, b1, ..., b11}. It can be shown that B is a basis for P11, the vector space of polynomials of degree at most 11. (

Answers

B is a basis for P11, the vector space of polynomials of degree at most 11. we can write any polynomial of degree at most 11 as a linear combination of B.

In the polynomial bk(x) := (1 – x)*211- for k = 0, 1,..., 11, let B {bo, b1, ..., b11}. B can be shown as a basis for P11, the vector space of polynomials of degree at most 11.

Basis in Linear Algebra refers to the collection of vectors that can uniquely identify every element of the vector space through their linear combinations. In other words, the span of these vectors forms the entire vector space. Therefore, it is essential to know the basis of a vector space before its inner workings can be understood. Consider the polynomial bk(x) := (1 – x)*211- for k = 0, 1,...,11 and let B = {bo, b1, ..., b11}. It is known that a polynomial of degree at most 11 is defined by its coefficients. A general form of such a polynomial can be represented as:

[tex]$$a_{0}+a_{1}x+a_{2}x^{2}+ \dots + a_{11}x^{11} $$[/tex]

where each of the coefficients {a0, a1, ..., a11} is a scalar value. It should be noted that bk(x) has a degree of 11 and therefore belongs to the space P11 of all polynomials having a degree of at most 11. Let's consider B now and show that it can form a basis for P11. For the collection B to be a basis of P11, two conditions must be satisfied: B must be linearly independent; and B must span the vector space P11. Let's examine these conditions one by one.1. B is linearly independent: The linear independence of B can be shown as follows:

Consider a linear combination of the vectors in B as:

[tex]$$c_{0}b_{0}+c_{1}b_{1}+\dots +c_{11}b_{11} = 0 $$[/tex]

where each of the scalars ci is a real number. By expanding the expression and simplifying it, we get:

[tex]$$c_{0} + (c_{1}-c_{0})x + (c_{2}-c_{1})x^{2} + \dots + (c_{11} - c_{10})x^{11} = 0 $$[/tex]

For the expression to hold true, each of the coefficients must be zero. Since each of the coefficients of the above equation corresponds to one of the scalars ci in the linear combination. Thus, we can write any polynomial of degree at most 11 as a linear combination of B. Therefore, B is a basis for P11, the vector space of polynomials of degree at most 11.

Learn more about vectors :

https://brainly.com/question/30958460

#SPJ11

(−1, 4), (0, 0), (1, 1), (4, 58)(a) determine the polynomial function of least degree whose graph passes through the given points.

Answers

The polynomial function of least degree that passes through the given points is f(x) =[tex]x^3 + 2x^2 - 3x[/tex].

To determine the polynomial function of least degree that passes through the given points (-1, 4), (0, 0), (1, 1), and (4, 58), we can use the method of interpolation. In this case, since we have four points, we can construct a polynomial of degree at most three.

Let's denote the polynomial as f(x) = [tex]ax^3 + bx^2 + cx + d[/tex], where a, b, c, and d are coefficients that need to be determined.

Substituting the x and y values of the given points into the polynomial, we can form a system of equations:

For (-1, 4):

4 =[tex]a(-1)^3 + b(-1)^2 + c(-1) + d[/tex]

For (0, 0):

0 =[tex]a(0)^3 + b(0)^2 + c(0) + d[/tex]

For (1, 1):

1 =[tex]a(1)^3 + b(1)^2 + c(1) + d[/tex]

For (4, 58):

58 = [tex]a(4)^3 + b(4)^2 + c(4) + d[/tex]

Simplifying these equations, we get:

-4a + b - c + d = 4 (Equation 1)

d = 0 (Equation 2)

a + b + c + d = 1 (Equation 3)

64a + 16b + 4c + d = 58 (Equation 4)

From Equation 2, we find that d = 0. Substituting this into Equation 1, we have -4a + b - c = 4.

Solving this system of linear equations, we find a = 1, b = 2, and c = -3.

Therefore, the polynomial function of least degree that passes through the given points is f(x) =[tex]x^3 + 2x^2 - 3x.[/tex]

for more such question on polynomial visit

https://brainly.com/question/2833285

#SPJ8

i need the work shown for this question

Answers

Answer:

LM = 16, TU = 24 , QP = 32

Step-by-step explanation:

the midsegment TU is half the sum of the bases, that is

[tex]\frac{1}{2}[/tex] (LM + QP) = TU

[tex]\frac{1}{2}[/tex] (2x - 4 + 3x + 2) = 2x + 4

[tex]\frac{1}{2}[/tex] (5x - 2) = 2x + 4 ← multiply both sides by 2 to clear the fraction

5x - 2 = 4x + 8 ( subtract 4x from both sides )

x - 2 = 8 ( add 2 to both sides )

x = 10

Then

LM = 2x - 4 = 2(10) - 4 = 20 - 4 = 16

TU = 2x + 4 = 2(10) + 4 = 20 + 4 = 24

QP = 3x + 2 = 3(10) + 2 = 30 + 2 = 32

determine the maximum constant speed at which the 2-mg car can travel over the crest of the hill at a without leaving the surface of the road. neglect the size of the car in the calculation.

Answers

the maximum constant speed is not determined by the car's speed, but rather by the requirement that the normal force must be greater than or equal to the gravitational force.

To determine the maximum constant speed at which the 2-mg car can travel over the crest of the hill without leaving the surface of the road, we can consider the forces acting on the car at that point.

At the crest of the hill, the car experiences two main forces: the gravitational force acting downward and the normal force exerted by the road surface upward. For the car to remain on the road, the normal force must be equal to or greater than the gravitational force.

The gravitational force acting on the car can be calculated as:

\(F_{\text{gravity}} = m \cdot g\)

where:

\(m\) = mass of the car (2 mg)

\(g\) = acceleration due to gravity (approximately 9.8 m/s²)

So, \(F_{\text{gravity}} = 2 mg \cdot g = 2 \cdot 2 \cdot g = 4g\)

The normal force acting on the car at the crest of the hill should be at least equal to \(4g\) for the car to remain on the road.

Now, let's consider the centripetal force acting on the car as it moves in a circular path at the crest of the hill. This centripetal force is provided by the frictional force between the car's tires and the road surface. The maximum frictional force can be calculated using the equation:

\(F_{\text{friction}} = \mu_s \cdot F_{\text{normal}}\)

where:

\(\mu_s\) = coefficient of static friction between the car's tires and the road surface

\(F_{\text{normal}}\) = normal force

For the car to remain on the road, the maximum static frictional force must be equal to or greater than \(F_{\text{gravity}}\).

So, we have:

\(F_{\text{friction}} \geq F_{\text{gravity}}\)

\(\mu_s \cdot F_{\text{normal}} \geq 4g\)

Substituting \(F_{\text{normal}}\) with \(4g\):

\(\mu_s \cdot 4g \geq 4g\)

The \(g\) terms cancel out:

\(\mu_s \geq 1\)

Since the coefficient of static friction (\(\mu_s\)) can have a maximum value of 1, it means that the maximum constant speed at which the car can travel over the crest of the hill without leaving the surface of the road is when the static friction is at its maximum.

to know more about coefficient visit:

brainly.com/question/30524977

#SPJ11

Why is y(
65°
174°
166°
87°

Answers

The value of angle ABC is determined as 87⁰.

option D is the correct answer.

What is the value of angle ABC?

The value of angle ABC is calculated by applying intersecting chord theorem, which states that the angle at tangent is half of the arc angle of the two intersecting chords.

m∠ABC = ¹/₂ (arc ADC ) (interior angle of intersecting secants)

From the diagram we can see that;

arc ADC = arc AD + arc CD

The value of arc AD is given as 130⁰, the value of arc CD is calculated as follows;

arc BD = 2 x 63⁰

arc BD = 126⁰

arc BD = arc BC + arc CD

126 = 82 + arc CD

arc CD = 44

The value of arc ADC is calculated as follows;

arc ADC = 44 + 130

arc ADC = 174

The value of angle ABC is calculated as follows;

m∠ABC = ¹/₂ (arc ADC )

m∠ABC = ¹/₂ (174 )

m∠ABC = 87⁰

Learn more about chord angles here: brainly.com/question/23732231

#SPJ1

The amount of trash, in tons per year, produced by a town has been growing linearly, and is projected to continue growing according to the formula P(t)=61+3tP(t)=61+3t. Estimate the total trash that will be produced over the next 6 years by interpreting the integral as an area under the curve.

Answers

The estimated total trash production over the next 6 years is approximately 420 tons.

To estimate the total trash produced over the next 6 years, we can interpret the integral of the function P(t) = 61 + 3t as the area under the curve. The integral of the function represents the accumulated trash production over time.

Integrating P(t) with respect to t gives us:

∫(61 + 3t) dt = 61t + [tex](3/2)t^2[/tex] + C

To find the total trash produced over a specific time interval, we need to evaluate the integral from the starting time to the ending time. In this case, we want to find the trash produced over the next 6 years, so we evaluate the integral from t = 0 to t = 6:

∫(61 + 3t) dt = [61t + [tex](3/2)t^2[/tex]] from 0 to 6

= [tex](61*6 + (3/2)*6^2) - (61*0 + (3/2)*0^2)[/tex]

= (366 + 54) - 0

= 420 tons

Therefore, the estimated total trash produced over the next 6 years is approximately 420 tons.

To learn more about integral refer:-

https://brainly.com/question/31433890

#SPJ11

Given f(x, y) = – 2 + 4xyº, find , x5 5 = fxz(x, y) = fry(x, y) = f(x, y) =

Answers

Partial derivative with respect to x (fx) = 4y^2, Partial derivative with respect to y (fy) = 8xy, Gradient vector (∇f) = <4y^2, 8xy>, Value of f(x, y) = -2 + 4xy^2

Partial derivative with respect to x (fx):To find fx, we differentiate f(x, y) with respect to x while treating y as a constant: fx = ∂f/∂x = 4y^2

Partial derivative with respect to y (fy):To find fy, we differentiate f(x, y) with respect to y while treating x as a constant: fy = ∂f/∂y = 8xy

Gradient vector (∇f):The gradient vector, denoted as ∇f, is a vector composed of the partial derivatives of f(x, y): ∇f = <fx, fy> = <4y^2, 8xy>

Evaluating f(x, y):To find the value of f(x, y), we substitute the given values of x and y into the function: f(x, y) = -2 + 4xy^2

to know more about partial derivatives, click: brainly.com/question/28750217

#SPJ11

The null and alternate hypotheses are:
H0 : μ1 = μ2
H1 : μ1 ≠ μ2
A random sample of 12 observations from one population revealed a sample mean of 25 and a sample standard deviation of 4.5. A random sample of 8 observations from another population revealed a sample mean of 30 and a sample standard deviation of 3.5.
At the 0.01 significance level, is there a difference between the population means?
a. State the decision rule. (Negative amounts should be indicated by a minus sign. Round your answer to 3 decimal places.)
The decision rule is to reject H0 if t < or t > .
b. Compute the pooled estimate of the population variance. (Round your answer to 3 decimal places.)
Pooled estimate of the population variance c. Compute the test statistic. (Negative amount should be indicated by a minus sign. Round your answer to 3 decimal places.)
Test statistic d. State your decision about the null hypothesis.
(Click to select)RejectDo not reject H0 .
e. The p-value is (Click to select)between 0.05 and 0.1between 0.2 and 0.05between 0.01 and 0.02between 0.1 and 0.2less than 0.1.

Answers

a. The decision rule is to reject H₀ if t < -tα/2 or t > tα/2.

b. the pooled estimate of the population variance is 18.429.

c. The test statistic is -2.601.

d. Since the test statistic falls within the rejection region, we reject the null hypothesis (H₀).

e. The p-value is the probability of obtaining a test statistic as extreme as the observed value, assuming the null hypothesis is true.

What is null hypothesis?

A hypothesis known as the null hypothesis states that sample observations are the result of chance. It is claimed to be a claim made by surveyors who wish to look at the data. The symbol for it is H₀.

a. The decision rule is to reject H₀ if t < -tα/2 or t > tα/2.

b. To compute the pooled estimate of the population variance, we can use the formula:

Pooled estimate of the population variance = ((n₁ - 1) * s₁² + (n₂ - 1) * s₂²) / (n₁ + n₂ - 2)

Plugging in the values, we get:

Pooled estimate of the population variance = ((12 - 1) * 4.5² + (8 - 1) * 3.5²) / (12 + 8 - 2) = 18.429

c. The test statistic can be calculated using the formula:

Test statistic = (x₁ - x₂) / √((s₁² / n₁) + (s₂² / n₂))

Plugging in the values, we get:

Test statistic = (25 - 30) / √((4.5² / 12) + (3.5² / 8)) ≈ -2.601

d. Since the test statistic falls within the rejection region, we reject the null hypothesis (H₀).

e. The p-value is the probability of obtaining a test statistic as extreme as the observed value, assuming the null hypothesis is true. In this case, the p-value is less than 0.01 (0.01 significance level), indicating strong evidence against the null hypothesis.

Learn more about null hypothesis on:

https://brainly.com/question/28042334

#SPJ4

Solve the following system of equations using matrices (row operations). If the system has no solution, say that it is inconsistent 2x - 3y - 5z = 2 6x + 10y +422 = 0 - 2x + 2y + 2z=1

Answers

To solve the system of equations 2x - 3y - 5z = 2, 6x + 10y + 422 = 0, and -2x + 2y + 2z = 1 using matrices and row operations, we represent the system augmented matrix form and perform row operations to simplify.

Let's represent the system of equations in augmented matrix form:

| 2    -3    -5  | 2   |

| 6    10   422 | 0   |

| -2    2     2  | 1   |

Using row operations, we can simplify the matrix to bring it to row-echelon form. By performing operations such as multiplying rows by constants, adding or subtracting rows, and swapping rows, we aim to isolate the variables and find a solution.

After performing the row operations, we reach the row-echelon form:

| 1    -1.5   -2.5 | 1   |

| 0     0      424 | -6  |

| 0     0      0   | 0   |

In the final row of the matrix, we have all zeroes in the coefficient column but a non-zero value in the constant column. This indicates an inconsistency in the system of equations. Therefore, the system has no solution and is inconsistent.

To learn more about augmented matrix click here :

brainly.com/question/30403694

#SPJ11

If n - 200 and X = 60, construct a 95% confidence interval estimate of the population proportion.

Answers

the 95% confidence interval estimate of the population proportion, given X = 60 and n - 200, is approximately 0.3 ± 0.0634.

To construct a confidence interval estimate of the population proportion, we use the formula: X ± Z sqrt((X/n)(1-X/n)).

Given X = 60 and n - 200, we have the sample size and the number of successes. The sample proportion is X/n = 60/200 = 0.3.

To determine the critical value Z for a 95% confidence level, we refer to the standard normal distribution table. For a 95% confidence level, the critical value corresponds to a cumulative probability of 0.975 in each tail, which is approximately 1.96.

Substituting the values into the formula, we have:

0.3 ± 1.96  sqrt((0.3(1-0.3))/200)

Calculating the expression within the square root, we get:

0.3 ± 1.96 sqrt(0.21/200)

Simplifying further, we have:

0.3 ± 1.96 sqrt(0.00105)

The confidence interval estimate is:

0.3 ± 1.96 × 0.0324

This yields the 95% confidence interval estimate for the population proportion.

In conclusion, the 95% confidence interval estimate of the population proportion, given X = 60 and n - 200, is approximately 0.3 ± 0.0634.

Learn more about confidence interval here:

https://brainly.com/question/32546207

#SPJ11

what is the FUNDAMENTAL THEOREM OF CALCULUS applications? How
it's related to calculus?

Answers

The Fundamental Theorem of Calculus is a fundamental result in calculus that establishes a connection between differentiation and integration. It has various applications in calculus, including evaluating definite integrals, finding antiderivatives, and solving problems involving rates of change and accumulation.

The Fundamental Theorem of Calculus consists of two parts: the first part relates differentiation and integration, stating that if a function f(x) is continuous on a closed interval [a, b] and F(x) is its antiderivative, then the definite integral of f(x) from a to b is equal to F(b) - F(a). This allows us to evaluate definite integrals using antiderivatives. The second part of the theorem deals with finding antiderivatives. It states that if a function f(x) is continuous on an interval I, then its antiderivative F(x) exists and can be found by integrating f(x). The Fundamental Theorem of Calculus has numerous applications in calculus. It provides a powerful tool for evaluating definite integrals, calculating areas under curves, determining net change and accumulation, solving differential equations, and more.

To know more about Fundamental Theorem here: brainly.com/question/30761130

#SPJ11

Calculus II integrals
Find the area of the shaded region. y у y=x² y 84 By= 2 x+16 (1,6) 6 (2, 4) (-2, 4) 2 y = 8 - 2x) х 4 2. 4 -2 A= Read it Need Help?

Answers

Answer:

Area of shaded region is A = -144744

Step-by-step explanation:

To find the area of the shaded region, we need to identify the boundaries of the region and set up the integral.

From the given graph, we can see that the shaded region is bounded by the curves y = x^2, y = 2x + 16, and the y-axis.

To find the x-values where these curves intersect, we can set the equations equal to each other and solve for x:

x^2 = 2x + 16

Rearranging the equation, we get:

x^2 - 2x - 16 = 0

Using quadratic formula or factoring, we find that the solutions are x = -4 and x = 4.

Thus, the boundaries of the shaded region are x = -4 and x = 4.

To set up the integral for the area, we need to integrate with respect to y since the region is bounded vertically. The integral will be from y = 0 to y = 84.

The area can be calculated as follows:

A = ∫[0, 84] (upper curve - lower curve) dx

A = ∫[0, 84] [(2x + 16) - x^2] dx

Integrating, we have:

A = [x^2 + 16x - (x^3/3)]|[0, 84]

A = [(84^2 + 16(84) - (84^3/3)) - (0^2 + 16(0) - (0^3/3))]

A = [7056 + 1344 - (392^2)] - 0

A = 7056 + 1344 - 154144

A = -144744

Learn more about area:https://brainly.com/question/22972014

#SPJ11




Find the directional derivative of the function at the point P in the direction of the point Q. f(x, y, z) = xy – xy2z2, P(1,-1, 2), Q(5, 1, 6) = Duf(1,-1, 2) = 1 = x

Answers

The directional derivative of the function [tex]f(x, y, z) = xy - xy^2z^2[/tex] at the point P(1, -1, 2) in the direction of the point Q(5, 1, 6) is -25/3.

What is derivative?

In mathematics, a quantity's instantaneous rate of change with respect to another is referred to as its derivative. Investigating the fluctuating nature of an amount is beneficial.

To find the directional derivative of the function [tex]f(x, y, z) = xy - xy^2z^2[/tex] at the point P(1, -1, 2) in the direction of the point Q(5, 1, 6), we need to calculate the gradient of f at P and then take the dot product with the unit vector in the direction of Q.

First, let's calculate the gradient of f(x, y, z):

∇f(x, y, z) = (∂f/∂x, ∂f/∂y, ∂f/∂z)

Taking partial derivatives of f(x, y, z) with respect to x, y, and z:

∂f/∂x [tex]= y - y^2z^2[/tex]

∂f/∂y [tex]= x - 2xyz^2[/tex]

∂f/∂z [tex]= -2xy^2z[/tex]

Now, let's evaluate the gradient at the point P(1, -1, 2):

∇f(1, -1, 2) = (∂f/∂x, ∂f/∂y, ∂f/∂z) [tex]= (y - y^2z^2, x - 2xyz^2, -2xy^2z)[/tex]

Substituting the coordinates of P:

∇f(1, -1, 2) [tex]= (-1 - (-1)^2(2)^2, 1 - 2(1)(-1)(2)^2, -2(1)(-1)^2(2))[/tex]

Simplifying:

∇f(1, -1, 2) = (-1 - 1(4), 1 - 2(1)(4), -2(1)(1)(2))

             = (-5, 1 - 8, -4)

             = (-5, -7, -4)

Now, let's find the unit vector in the direction of Q(5, 1, 6):

u = Q - P / ||Q - P||

where ||Q - P|| represents the norm (magnitude) of Q - P.

Calculating Q - P:

Q - P = (5 - 1, 1 - (-1), 6 - 2)

     = (4, 2, 4)

Calculating the norm of Q - P:

||Q - P|| = √[tex](4^2 + 2^2 + 4^2)[/tex]

         = √(16 + 4 + 16)

         = √36

         = 6

Now, let's find the unit vector in the direction of Q:

u = (4, 2, 4) / 6

 = (2/3, 1/3, 2/3)

Finally, to find the directional derivative Duf(1, -1, 2) in the direction of Q:

Duf(1, -1, 2) = ∇f(1, -1, 2) · u

Calculating the dot product:

Duf(1, -1, 2) = (-5, -7, -4) · (2/3, 1/3, 2/3)

             = (-5)(2/3) + (-7)(1/3) + (-4)(2/3)

             = -10/3 - 7/3 - 8/3

             = -25/3

Therefore, the directional derivative of the function [tex]f(x, y, z) = xy - xy^2z^2[/tex] at the point P(1, -1, 2) in the direction of the point Q(5, 1, 6) is -25/3.

Learn more about derivative on:

https://brainly.com/question/23819325

#SPJ4

What is the factorization of 729x15 + 1000?

(9x5 + 10)(81x10 – 90x5 + 100)
(9x5 + 10)(81x5 – 90x10 + 100)
(9x3 + 10)(81x6 – 90x6 + 100)
(9x3 + 10)(81x9 – 90x3 + 100)

Answers

The Factorization of 729x^15 + 1000 is (9x^5 + 10)(81x^10 - 90x^5 + 100)

To factorize the expression 729x^15 + 1000, we need to recognize that it follows the pattern of a sum of cubes.

The sum of cubes can be factored using the formula:

a^3 + b^3 = (a + b)(a^2 - ab + b^2)

In this case, we have a = 9x^5 and b = 10. Plugging these values into the formula, we get:

729x^15 + 1000 = (9x^5 + 10)((9x^5)^2 - (9x^5)(10) + 10^2)

Simplifying further:

729x^15 + 1000 = (9x^5 + 10)(81x^10 - 90x^5 + 100)

Therefore, the factorization of 729x^15 + 1000 is (9x^5 + 10)(81x^10 - 90x^5 + 100).

To know more about Factorization .

https://brainly.com/question/14268870

#SPJ8

Solve the simultaneous equations
2x + 5y = 4
7x - 5y = -1

Answers

By algebra properties, the solution to the system of linear equations is (x, y) = (1 / 3, 2 / 3).

How to solve a system of linear equations

In this problem we find a system of two linear equations with two variables, whose solution should be found. This can be done by means of algebra properties. First, write the entire system:

2 · x + 5 · y = 4

7 · x - 5 · y = - 1

Second, clear variable x in the first expression:

2 · x + 5 · y = 4

x + (5 / 2) · y = 2

x = 2 - (5 / 2) · y

Third, substitute on second expression:

7 · [2 - (5 / 2) · y] - 5 · y = - 1

Fourth, simplify the expression:

14 - (35 / 2) · y - 5 · y = - 1

14 - (45 / 2) · y = - 1

15 = (45 / 2) · y

30 = 45 · y

y = 30 / 45

y = 2 / 3

Fifth, compute the variable x:

x = 2 - (5 / 2) · (2 / 3)

x = 2 - 5 / 3

x = 1 / 3

To learn more on systems of linear equations: https://brainly.com/question/20899123

#SPJ1

Find an equation for the set of points in an xy-plane that are equidistant from the point P and the line l. P(−9, 2); l: x = −3

Answers

The equation for the set of points equidistant from the point P(-9, 2) and the line l: x = -3 is[tex](x + 3)^2 + (y - 2)^2 = 121.[/tex]

To find the equation for the set of points equidistant from a point and a line, we first consider the distance formula. The distance between a point (x, y) and the point P(-9, 2) is given by the distance formula as sqrt([tex](x - (-9))^2 + (y - 2)^2).[/tex]

Next, we consider the distance between a point (x, y) and the line l: x = -3. Since the line is vertical and parallel to the y-axis, the distance between any point on the line and a point (x, y) is simply the horizontal distance, which is given by |x - (-3)| = |x + 3|.

For the set of points equidistant from P and the line l, the distances to P and the line l are equal. Therefore, we equate the two distance expressions and solve for x and y:

sqrt([tex](x - (-9))^2 + (y - 2)^2) = |x + 3|[/tex]

Squaring both sides to eliminate the square root and simplifying, we get:

[tex](x + 3)^2 + (y - 2)^2 = (x + 3)^2[/tex]

Further simplification leads to:

(y - 2)^2 = 0

Hence, the equation for the set of points equidistant from P and the line l is [tex](x + 3)^2 + (y - 2)^2 = 121.[/tex]

Learn more about square root here:

https://brainly.com/question/29286039

#SPJ11

Show that the set of all nilpotent elements in a commuative ring
forms an ideal.
Here, r is nilpotent if rn = 0 for some positive
integer n > 0.

Answers

To prove that the set of all nilpotent elements forms an ideal, we need to verify two conditions: closure under addition and closure under multiplication by any element in the ring.

Closure under addition: Let a and b be nilpotent elements in the commutative ring. This means that there exist positive integers m and n such that a^m = 0 and b^n = 0. Consider the sum a + b. We can expand (a + b)^(m + n) using the binomial theorem and observe that all terms involving a^i or b^j, where i ≥ m and j ≥ n, will be zero. Hence, (a + b)^(m + n) = 0, showing closure under addition.

Closure under multiplication: Let a be a nilpotent element in the commutative ring, and let r be any element in the ring. We want to show that ar is also nilpotent.

Since a is nilpotent, there exists a positive integer k such that a^k = 0. By raising both sides of the equation to the power of k, we get (a^k)^k = 0^k, which simplifies to a^(k^2) = 0. Therefore, (ar)^(k^2) = a^(k^2)r^(k^2) = 0, proving closure under multiplication.

By satisfying both closure conditions, the set of all nilpotent elements in a commutative ring forms an ideal.

Learn more about nilpotent elements : brainly.com/question/29348107

#SPJ11

A medical researcher wanted to test and compare the impact of three different dietary supplements as a means to examine to what extent dietary supplements can speed up wound healing times. She randomly selected 36 patients and then randomly divided this group into three subgroups: a ‘Placebo’ group who ingested sugar-pills; a ‘Vitamin X’ group who took vitamin pills; and a ‘Kale’ group who took Kale pills. The study involved the groups taking their pill-based supplements three times a day for one week and at the end, their wound healing times were recorded
What sort of research design is this?
a. Repeated-measures factorial design.
b. Independent factorial design.
c. ANOVA.
d. Multiple linear regression.

Answers

The research design described is an independent factorial design, as it involves randomly assigning participants to different groups and manipulating the independent variable (type of dietary supplement) to examine its impact on the dependent variable (wound healing times).

The research design described in the scenario is an independent factorial design. In this design, the researcher randomly assigns participants to different groups and manipulates the independent variable (type of dietary supplement) to examine its impact on the dependent variable (wound healing times). The independent variable has three levels (Placebo, Vitamin X, and Kale), and each participant is assigned to only one of these levels. This design allows for comparing the effects of different dietary supplements on wound healing times by examining the differences among the three groups.

In this study, the researcher randomly divided the 36 patients into three subgroups, ensuring that each subgroup represents a different level of the independent variable. The participants in each group took their assigned pill-based supplement three times a day for one week, and at the end of the week, their wound healing times were recorded. By comparing the wound healing times among the three groups, the researcher can assess the impact of the different dietary supplements on the outcome variable.

Overall, the study design employs an independent factorial design, which allows for investigating the effects of multiple independent variables (the different dietary supplements) on a dependent variable (wound healing times) while controlling for random assignment and reducing potential confounding variables.

Learn more about divided here: https://brainly.com/question/15381501

#SPJ11

I
need it ASAP please
Find a fundamental set of solutions of the given equation. (D+5)(D2 – 6D + 25)y = 0

Answers

The fundamental set of solutions of the equation (D + 5)(D2 - 6D + 25)y = 0 is :

y1 = e^(-5x),

y2 = e^(3x)cos4x, and

y3 = e^(3x)sin4x.

The given equation is (D + 5)(D2 - 6D + 25)y = 0.

The characteristic equation is given as:

(D + 5)(D2 - 6D + 25) = 0.

D = -5, (6 ± √(- 4)(25)) / 2 = 3 ± 4i.

The roots are :

-5, 3 + 4i, and 3 - 4i.

Since the roots are distinct and complex, we can express the fundamental set of solutions as :

y1 = e^(-5x),

y2 = e^(3x)cos4x, and

y3 = e^(3x)sin4x.

Thus, the fundamental set of solutions of the given equation is y1 = e^(-5x), y2 = e^(3x)cos4x, and y3 = e^(3x)sin4x.

To learn more about characteristic equation visit : https://brainly.com/question/18406313

#SPJ11

Let Σε α, = 1 n=1 Question 1 (20 points): a) [10 points] Which test is most appropriate In(n+7) for series: Σ ? n=1 n+2 b) [10 points) Determine whether the above series is convergent or divergent.

Answers

The question asks about the most appropriate test to determine the convergence or divergence of the series Σ (In(n+7) / (n+2)), and then it seeks to determine if the series is convergent or divergent.

a) To determine the most appropriate test for the series Σ (In(n+7) / (n+2)), we can consider the comparison test. The comparison test states that if 0 ≤ aₙ ≤ bₙ for all n, and Σ bₙ converges, then Σ aₙ also converges. In this case, we can compare the given series with the harmonic series, which is a well-known divergent series. By comparing the terms, we can see that In(n+7) / (n+2) is greater than or equal to 1/n for sufficiently large n. Since the harmonic series diverges, we can conclude that the given series also diverges.

b) Based on the comparison test and the conclusion from part a), we can determine that the series Σ (In(n+7) / (n+2)) is divergent. Therefore, the series does not converge to a finite value as the number of terms increases. It diverges, meaning that the sum of its terms goes to infinity.

Learn more about series here: https://brainly.com/question/32525627

#SPJ11

Other Questions
The given chemical reaction is:Reaction 1 : H = +109 kJ/molWhat is the enthalpy for reaction 1 reversed? In 2020, the market values of DuPonts common stock, preferred stock, and debt were $30,860 million, $187 million, and $9543 million, respectively. Its total value was, therefore, $30,860 million + $187 million + $9543 million = $40,590. Given the costs of common stock, preferred stock, and debt we have already computed, DuPonts WACC in 2020 wasI'm just curious about how to calculate the WACC Evaluate = my ds where is the right half of the circle 2? + y2 = 4 winston and his friends are heading to the yeti trails snow park. they plan to purchase the yeti group package, which costs $54 for 6 people. that's $3 less per person than the normal cost for an individual. which equation can you use to find the normal cost, x, for an individual? (7 pts each) For each part of this problem, state which integration technique you would use to evaluate the integral, but do not evaluate the integral. If your answer is u substitution, also list u and du, and rewrite the equation in terms of u; If your answer is integration by parts, also list u, dv, du and v, and rewrite the integral; If your answer is partial fractions, set up the partial fraction decomposition, but you do not need to solve for the constants in the numerators; If your answer is trigonometric substitution, write which substitution you would use and rewrite the equation in term of the new variable. a. f dx (x-9)z 3t-8 b. t t(t-4) c. 5xex dx which function best represents the number of operations in the worst-case? start = 0; while (start < n) { start; } a. f(n)=n 2 b. f(n)=n 3 c. f(n)=2n 1 d. f(n)=2n 2 Evaluate the Jacobian J( ) for the following transformation, X = v +w, y = u +w, z = u + V J(u,v,w) = (Simplify your answer.) Draw and label the structure of a neuron. if a household`s income rises from $46,000 to $46,700 and its consumption spending rises from $35,800 to $36,400, then itsA. marginal propensity to consume is 0.86B. marginal propensity to consume is 0.99C. marginal propensity to consume is 0.98D. marginal propensity to save is 0.01E. marginal propensity to save is 0.86 The following steps are required to implement business process re-engineering. i. Establish goals ii. Reorganise work flow iii. Prepare a business process map iv. Implementation What is the correct order for these steps? O a. (i), (iii), (i) and (iv) O b. (iii), (i), (ii) and (iv) Oc. (i), (iii), (ii) and (iv) Od. (i), (ii), (iii) and (iv) one way of consuming a combination of goods a country cannot produce on its own is with . (use one word for the blank.) 11. (6 points) For an experiment, Esmerelda sends an object into a tube as shown: Tube interior 10 The object's velocity t seconds after it enters the tube is given by o(t) = 30 (where a positive velocity indicates movement to the right) (a) How far from the tube opening will the object be after 7 seconds? (b) How rapidly will the object's velocity be changing after 4 seconds? Explain the relationship between the local) maxima and minima of a function and its derivative, at least at the points at which the derivative exists. " AI TRIPLE CAMERA SHOT ON itel 4.1 Question 4 Table 3 below shows the scoreboard of the recently held gymnastic competition, it also reflects the decimal places. names of the athletes, and their teams, divisions and various events with total scores given to three TABLE 3: GYMNASTIC COMPETITION SCOREBOARD GYMNAST TEAM G Gilliland H Radebe L. Gumede GTC Olympus Olympus TGA GTC Olympus GTC GTC TGA A Boom B Makhatini Olympus S Rigby H Khumalo C Maile M Stolp M McBride DIV. 4.1.4 Determine the missing value C. 4.1.5 Define the term modal. Senior A Junior B Junior A Senior A Senior A Junior A Senior A Junior A Senior A Junior B VAULT EVENTS > BARS A BEAM FLOOR TOTAL SCORE 9,550 9,400 9.625 37.675 37,000 36,975 9,450 9,250 8,900 9,400 9,475 9,300 8,700 9,500 8,650 8,925 9,100 9,350 36,425 9,225 36,425 9,050 9,375 36,400 9,500 9,300 C 8,950 9,025 9,400 B 1 8,725 9.475 9,050 8,700 9,650 9,350 9,500 36,375 9,050 36,275 8,300 8,700 9,500 36,150 9,200 9,150 9,350 37,050 (adapted from DBE 2018 MLQP) Use the above scoreboard to answer questions that follow. 4.1.1 Identify the team that achieved the lowest score for the vault event? 4.1.2 G. Gilliland's range is 0.525, calculate his minimum score A. 4.1.3 The mean score for the bar event is 8. 975, calculate the value of B. Round you answer to the nearest whole number. 4.1.6 Write down the modal score for the total points scored. 4.1.7 Determine, as a percentage, the probability of selecting a gymnast in the junior division with a total score of more than 36, 970. 4.1.8 Calculate the value of quartile 2 for the floor event. (2) (3) (6) (3) [24] The marketing manager of a major grocery store believes that the probability of a customer buying one of the two major brands of toothpa: Calluge and Crasti, at his store depends on the customer's most recent purchase. Suppose that the following transition probabilities are appropriate ToFrom Calluge CrastiCalluge 0.8 0.3 Crasti 0.2 0.7 Given a customer initially purchased Crasti, the probability that this customer purchases Crasti on the second purchase is a. (0.2)(0.2)+(0.8)(0.7)=0.60 b. (0.3)(0.7)+(0.7)(0.2)=0.35 c. (0.2)(0.3)+(0.8)(0.8)=0.70 d. (0.3)(0.2)+(0.7)(0.7)=0.55 e. none of the above Factors that affect choice of marketing channels ininternational markets? plus examples of the factors scores. , on a certain entrance exam are normally distributed with mean 71.8 and standard deviation 12.3. find the probability that the mean score of 20 randomly selected exams is between 70 and 80. round your answer to three decimal places. Inflammatory skin disease with erythematous, papulovesicular lesions.Treatment depends on the cause, usually includes the use of costicosteroidsOccur in patients with a family history of allergic conditions. For a lockset installation, professionals generally prefer to use _____.a routera boring jig and boring bitthe manufacturer's templatea hole saw which of the following was not one of the schemes used by beazer homes to manipulate its earnings? multiple choice improper recording of revenue on sale-leaseback transactions fraudulently increased land inventory expense accounts to reduce earnings over-reserving of house cost-to-complete expenses to increase reported earnings in earlier periods recording revenue from roundtrip transactions prematurely