In the given expressions (f x g)(-4) is -8a³ - 8a² + 12a + 12.
What exactly are expressions?A mathematical expression is a sentence that has at least two variables or numbers and one or more mathematical operations.Mathematicians can multiply, divide, add, or subtract.An expression is structured as follows: Number/variable, mathematical operator, and expressionSo, (a+1)(2a²-3)(-4):
(a+1)(2a²-3)(-4)a(2a²-3) +1(2a²-3)(-4)(2a³-3a +2a²-3)-4-8a³ - 8a² + 12a + 12Therefore, in the given expressions (f x g)(-4) is -8a³ - 8a² + 12a + 12.
Know more about expressions here:
brainly.com/question/723406
#SPJ9
Use graphing to find the x-coordinate of the solution to each system. ) x + 2y = 6 5x - 4y = 16 A) -1 B) 4 C) 5 D) 1
The x coordinate of the solution to the system is 4
What are linear equations?Linear equations are equations that have constant average rates of change. Note that the constant average rates of change can also be regarded as the slope or the gradient
How to determine the solution to the system?A system of linear equations is a collection of at least two linear equations.
In this case, the system of equations is given as
x + 2y = 6
5x - 4y = 16
Next, we plot the graph of x + 2y = 6 and 5x - 4y = 16 (see attachment)
From the attached graph, the point of intersection is
(x, y) = (4, 1)
Remove the y coordinate
x = 4
Hence. the x coordinate of the solution to the system is 4
Read more about linear equations at
https://brainly.com/question/14323743
#SPJ1
Help me out please I would really appreciate it.
Answer:
-55
Step-by-step explanation:
The pattern here is subtracting by 2 higher than the previous term.
As you can see
1 -2 = -1
-1 - 4= -5
-5 - 6 = -11
etc.
Continuing until the eighth term gets you - 41 - 14 = -55
The fraction
3
29 represents ____ of the ____ equal parts into which a whole is divided. Please help!
Answer:
SQUARE 1:
100% ; 75%
Step-by-step explanation:
I'm pretty sure this is right i hope this help
A road race is 13 1 2 miles long. there are water stations every 3 4 mile including at the finish line. how many water stations are there in all?
By solving the improper fractions, there are 18 water stations in all.
This problem can be solved by two methods:
Method 1 :
First of all, calculate 13²/₃ miles in fraction. The value is 13.5 miles. Then calculate 3/4 mile in fraction. The value is .75 miles.
Now divide 13.5 miles by 0.75 miles.
13.5 ÷ 0.75 = 18
So, 18 water stations are there in all.
Method 2 :
Convert 13 ¹/₂ miles into an improper fraction from 27/2 miles.
Now, again divide 27/2 miles by 3/4.
27/2 ÷ 3/4 = ²⁷/₂ ₓ ⁴/₃ = 18
So, 18 water stations are there in all.
To know more about improper fractions, refer to the following link:
https://brainly.com/question/387381
#SPJ4
The population of a community, , is modeled by this exponential function, where x represents the number of years since the population started being recorded. what is the approximate population 3 years after the population started being recorded?
The approximate population 3 years after the population started being recorded is 2584.
What is an exponential function:
An exponential function is a Mathematical function in the form f (x) = ax, where “x” is a variable and “a” is a constant which is called the base of the function and it should be greater than 0. The most commonly used exponential function base is the transcendental number e, which is approximately equal to 2.71828.
Given that,
The population of a community is modeled by this exponential function, where x represents the number of years since the population started being recorded:
p(x) = 2,400(1.025)×
Plug x = 3 years in the above function.
P(3) = 2400(1.025)³
P(3) = 2400x1.0768
P(3) = 2584.53 ≈ 2584 people
Therefore,
The approximate population 3 years after the population started being recorded is 2584 people.
To know more about "Exponential Function"
Refer this link:
https://brainly.com/question/11487261
#SPJ4
A university class has 21 students: 11 are history majors, 4 are psychology majors, and 6 are art majors. (Each student has only one of these majors.) The professor is planning to select two of the students for a demonstration. The first student will be selected at random, and then the second student will be selected at random from the remaining students. What is the probability that the first student selected is a psychology major and the second student is an art major?
The probability that the first student selected is a psychology major and the second student is an art major is 0.057.
How to calculate the probability?Probability for psychology = 4/21
Probability for art major = 6/21
Therefore, the probability that the first student selected is a psychology major and the second student is an art major will be:
= P(Psychology) × P(art)
= 4/21 × 6/20
= 24/420
= 0.057
Therefore, the probability that the first student selected is a psychology major and the second student is an art major is 0.057.
Learn more about probability on:
brainly.com/question/24756209
#SPJ1
Find the inverse of each function. Is the inverse a function? y=10-2 x²
The inverse of the function y= 10 - 2x² is y =√ (10 - x) / 2. .
Inverse Variation:
A connection between two variables is said to have inverse variation when one of the variables rises while the other falls.
When two variables, let's say X and Y, are coupled in such a way that raising X results in a drop in Y and vice versa, this is known as indirect or inverse variation.
All we have to do to find the inverse of a function is switch the variables x and y.
x = 10 - 2y²
Now, solve for y as follows:
2y² = 10 - x
y² = (10 - x)/2
y = √ (10 - x) / 2
Therefore, the inverse of the function y=10 - 2x² is y = √ (10 - x) / 2.
To learn more about inverse variation click here:
brainly.com/question/13998680
#SPJ9
A model rocket is launched with an initial upward velocity of 57m/s. The rocket's height h (in meters) after t seconds is given by the following.
h=57t-5t^2
Find all values of for which the rocket's height is 29 meters.
The values of for which the rocket's height is 29 meters are 0.75 and -0.67.
How can the values of for which the rocket's height be calculated?The rocket's height h (in meters) after t seconds is given by the following.
h=57t-5t^2
Then the equation after the height is 29 meters was given will be
[tex]h=57t-5t^2[/tex]
29=57t-5t^2
then we will have [tex]57t-5t^2-29=0[/tex]
Then this is a quadratic equation, which can be solved, to find t, then after using the quadratic formular the values of t are:
0.75 and -0.67
Then we can chose 0.75 seconds
Therefore, from the question, we can see that after the quadratic equation has been performed 0.75 and -0.67 serves as the values for the height of 29 metres.
Learn more about velocity at:
https://brainly.com/question/4535155
#SPJ1
Between what two integers is
-√19 located on the number
line?
Answer:
1 and 1.50 or 1 and 2, but most likely the first one.
Step-by-step explanation:
(10, y) and (3, 4); m = -2/7
The value of y is 1/ 2
What is slope?The slope of a line can be defined as a number that describes;
The direction of the lineThe steepness of the lineSlope of a line is also called the gradient of a line.
It is also known as the ratio of the rise to the run, or the quotient of the riser to the run.
The formula for slope is expressed as;
Slope = y2 - y1/ x2 - x1
Now, substitute the values
-2/ 7 = 4 - y/3 - 10
Find the ratio
-2/ 7 = 4 - y/-7
cross multiply
14 = 7(4 - y)
expand the bracket
14 = 28 - 7y
collect like terms
14 - 28 = -7y
-14 = -7y
Make 'y' the subject of formula
y = 1/2
Thus, the value of y is 1/ 2
Learn more about slope here:
https://brainly.com/question/16949303
#SPJ1
The table shows the number of vehicles
washed at a car wash fundraiser over the
weekend. If there were a total of 94 vehicles,
how many were washed on Saturday? Explain.
Answer:
Solution:
Total 94 vehicles
Washed on saturday:
34+27=61
94-61=33
So 33 vehicles are washed on Saturday.
A rectangular brick wall is 7 m wide and 1 m
tall.
Use Pythagoras' theorem to work out the
distance between diagonally opposite corners.
Give your answer in metres (m) to 1 d.p.
The diagonal of the given brick using the Pythagorean Theorem is 5√2.
The Pythagorean Theorem is what?The three sides of a right triangle in Euclidean geometry have a basic relationship known as the Pythagorean theorem, also referred to as Pythagoras' theorem.This statement implies that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.A Pythagorean triple is made up of three positive integers a, b, and c if and only if their sum, a2 + b2, is equal to their sum, c2.Such a triple is frequently written as (a, b, c), and a well-known example is (3, 4, 5).So, let the diagonal be 'x'.
Pythagorean formula: x² = b² + h²
Now,
x² = b² + h²x² = 7² + 1²x² = 49 + 1x² = 50x = √50x = √5 × 5 × 2x = 5√2Therefore, the diagonal of the given brick using the Pythagorean Theorem is 5√2.
Know more about the Pythagorean theorem here:
brainly.com/question/654982
#SPJ9
Expand each logarithm.
log₃(2 x)²
If the expression is log₃(2 x)², then the expansion of this looks like
2 (log 2+log x)/log 3.
Given that the expression is log₃(2 x)².
We are required to expand the expression by using the properties of logarithmic function.
The change of base formula is basically the formula that will give you the answer of a log with a different base by using only log calculations with a base of 10.
The expression is log₃(2 x)².
log₃(2 x)²=2 [tex]log_{3}[/tex] 2x
=2 (log 2+log x)/log 3
Hence if the expression is log₃(2 x)², then the expansion of this looks like 2 (log 2+log x)/log 3.
Learn more about base change theorem at https://brainly.com/question/14998693
#SPJ4
HI please help!!!!!!!!!!!
he started with 90 dollars and spent $3.50 each day
This figure is a step in which construction?
2. The population of a city grows at a rate of 5% per year. The population in 1990 was
400,000. In what year would we predict the population to reach 1,000,000?
The year in which we predict the population to reach 1,000,000 based on annual growth rate of 5% is 2009
How many years would population will be 1,000,000?
The year that the population of the city would reach 1,000,000 can be determined by first of all computing the number of years beginning from 1990 that it would take the population size of 400,000 to reach 1,000,000
FV=PV*(1+G)^n
FV=future population size=1,000,000
PV=present population size=400,000
g=population growth rate per year=5%
N=number of years it takes population to become 1,000,000=unknown
1,000,000=400,000*(1+5%)^N
1,000,000/400,000=(1+5%)^N
2.50=(1.05)^N
take log of both sides
ln(2.50)=N*ln(1.05)
N=ln(2.50)/ln(1.05)
N=19(rounded to the nearest whole number)
number of years before population reach 1m=1990+19
number of years before population reach 1m=2009
Find out more about population growth rate on:https://brainly.com/question/22154174
#SPJ1
Evaluate each expression for x=-2,0 , and 2 .
-5 x⁻²
The value of given expression for x=0 is 0, x=-2 is -1.25 and x=2 is -1.25.
Given the expression is -5x⁻².
Firstly, we will simplify the given expression -5x⁻² for x=0.
Substitute the value x=0 in given expression, we get
-5x⁻²=-5(0)⁻²
-5x⁻²=-5(0)
As we know that something multiply with 0 is zero.
So, we get
-5x⁻²=0
Now, we will simplify the given expression -5x⁻² for x=2.
Substitute the value x=2 in given expression, we get
-5x⁻²=-5(2)⁻²
Now, we will square the expression to simplify it, we get
-5x⁻²=-5(4)⁻¹
Further, we will divide it above expression by 1 to remove negative sign, we get
-5x⁻²=-5/4
-5x⁻²=-1.25
Furthermore, we will simplify the given expression for x=-2.
Substitute the value x=-2 in given expression, we get
-5x⁻²=-5(-2)⁻²
Now, we will square the given expression, we get
-5x⁻²=-5(4)⁻¹
Further, we will divide it above expression by 1 to remove negative sign, we get
-5x⁻²=-5/4
-5x⁻²=-1.25
Hence, the value of expression -5x⁻² for x=0, 2 and -2 is 0, -1.25 and -1.25.
Learn more about the expression from here brainly.com/question/945593
#SPJ4
For each annual rate of change, find the corresponding growth or decay factor. -75 %
For each annual rate of change , the corresponding growth or decay factor is - 0.75 .
Given : annual rate of change = - 75 % .
To find : corresponding growth or decay factor .
For an exponential growth function ,
y = a ( [tex]1 + r^{t}[/tex] ) ,
( 1 + r ) is the growth factor and
for an exponential decay function y = a ( [tex]1 - r ^{t}[/tex] ) ,
( 1 - r ) is the decay factor .
According to question ,
( - 75 ) / 100 = - 0 .75
Hence , for each annual rate of change , the corresponding growth or decay factor is - 0.75 .
To learn more on decay factor :
https://brainly.com/question/23184635
#SPJ4
Answer C please, thank you
Answer:
the 1st value represents x, the independent value
the 2nd value represents y, the dependent value
I think that is what it is asking
It is a vague question
Answer:
GradeHours StudiedStep-by-step explanation:
You want to know the meaning of the first and second values in the ordered pairs that represent the relation shown in the diagram.
Ordered pairThe ordered pairs representing a relation are understood to be ...
(first value, second value) = (input value, output value)
= (value at arrow tail, value at arrow head)
The diagram labels the ends of the arrows as "Grade" and "Hours Studied." That tells you the values mean ...
first value: Grade
second value: Hours Studied
Determine if 0.131331333133331333331... is rational or irrational and give a reason for your answer.
the value of y varies directly with x if x=3 then y=21
When y= 105 then x= 15.
What is proportion?A proportion is an equation in which two ratios are set equal to each other.
given:
At x=3, y=21
at y= 105 , x=?
So, creating proportionality
105/x= 21/3
105/x = 7
x= 105/7
x=15
Hence, when y= 105 then x= 15.
Learn more about proportionality here:
https://brainly.com/question/11502018
#SPJ1
The question attached here is incomplete.
The complete question is
The value of y varies directly with x. If x = 3, then y = 21. What is the value of x when y = 105?
3+1+p=12
O p = 10 or p = -10
O p = 8 or p = -10
O p = 8 or p = -8
O p = 14 or p = -16
Answer:
p = 8
Step-by-step explanation:
3 + 1 + p = 12
Rearrange the equation so that you have integers on one side and algebra on the other.
3 + 1 + p = 12
p = 12 - 3 - 1
p = 8
Mario walks 9 blocks from his home to a resturant. He then walks back toward home for 5 blocks, where he stops at a bookstore. How many blocks is Mario from his home?
Answer:
4
Step-by-step explanation:
9 - 5 = 4
36. PHYSIOLOGY If you know how tall you were at the age of 2, you canestimate your adult height (in inches). Girls can use the expression 25+ 1.17h where h is the height (in inches) at the age of 2. Boys can use the expression 22.7 + 1.37h. Estimate the adult height of each person to the nearest inch.
a. A girl who was 34 inches tall at age 2 b. A boy who was 33 inches tall at age 2
Answer: The adult height of a girl who was 34 inches tall at age 2 is = 64.98 inches.
The adult height of a boy who was 33 inches tall at age 2 is = 67.91 inches.
Step-by-step explanation:
Given data,
PHYSIOLOGY If you know how tall you were at the age of 2, you can estimate your adult height (in inches).
Girls can use the expression 25+ 1.17h
where, h is the height (in inches) at the age of 2.
and, Boys can use the expression 22.7 + 1.37h.
So,
Let adult height of boys is represented by = y and
Let adult height of girls is represented by = x
From the equation,
adult height of girls expression is x = 25+ 1.17h
adult height of boys expression is y = 22.7 + 1.37h
First we can solve option a,
We have been asked to find the adult height of a girl who was 34 inches tall at age 2.
x = 25+ 1.17h
where, h = 34 inches
x = 25 + 1.17 (34)
x = 25 + 39.78
x = 64.98 inches
Therefore,
The adult height of a girl who was 34 inches tall at age 2 is = 64.98 inches.
First we can solve option b,
We have been asked to find the adult height of a boy who was 33 inches tall at age 2.
y = 22.7 + 1.37h
where, h = 33 inches
y = 22.7 + 1.37(33)
y = 22.7 + 45.21
y = 67.91 inches
Therefore,
The adult height of a boy who was 33 inches tall at age 2 is = 67.91 inches.
So,
The adult height of a girl who was 34 inches tall at age 2 is = 64.98 inches.
The adult height of a boy who was 33 inches tall at age 2 is = 67.91 inches.
Learn more about event correlation here: brainly.com/question/26726039
#SPJ9
what would the area a large rectangle has side lengths of 8 centimeters and 7 centimeters. a small square with side lengths of 4 centimeters is cut out of the large rectangle.
Answer:
40 cm^2
Step-by-step explanation:
Area of rectangle = length * width.
Area of square = length^2
To find the area of the given shape, we must subtract the area of the square from the area of the rectangle.
Area of the given rectangle = 8 * 7 = 56 cm^2
Area of the given square = 4^2 = 16 cm^2
56 - 16 = 40 cm^2
Show each step of the solution. 12x<9(2x-3)+9
Answer:solve for x
x>3
Step-by-step explanation: 12x<9(2x−3)+9
Use the distributive property to multiply 9 by 2x−3.
12x<18x−27+9
Add −27 and 9 to get −18.
12x<18x−18
Subtract 18x from both sides.
12x−18x<−18
Combine 12x and −18x to get −6x.
−6x<−18
Divide both sides by −6. Since −6 is negative, the inequality direction is changed.
x>
−6
−18
Divide −18 by −6 to get 3.
x>3
find the square root 0.36
A. 0.06
B. 0.18
C. 0.006
D. 0.6
What is the volume of a cone (in cubic inches) of radius 2 inches and height 6 inches? Use 3.14 for π. Round your answer to the nearest hundredth. (1 point) a 12.56 b 25.12 c 37.68 d 75.3
Given the radius and height, the volume of the cone to the nearest hundredth is 25.12 in³.
Option b)25.12 in³ is the correct answer.
What is the volume of the cone with the given radius and height?A cone is simply a 3-dimensional geometric shape with a flat base and a curved surface pointed towards the top.
The volume of a cone is expressed as;
V = (1/3)πr²h
Given the data in the question;
Radius r = 2inHeight h = 6inConstant pi π = 3.14Volume V = ?Plug the given values into the volume formula above and simplify.
V = (1/3)πr²h
V = (1/3) × 3.14 × (2in)² × 6in
V = (1/3) × 3.14 × 2in² × 6in
V = (1/3) × 3.14 × 4in² × 6in
V = 25.12 in³
Given the radius and height, the volume of the cone to the nearest hundredth is 25.12 in³.
Option b)25.12 in³ is the correct answer.
Learn more on volume of cones here: https://brainly.com/question/16645621
#SPJ1
(11a^4 - 2a^2 - 12a^3) - (9a^2 - a^3) - (12a^4 + 10a^3 + 11a^2) please simplify
Answer:
-a^2*(a^2+21a+22)
best I can do
Solve. Check for extraneous solutions. (5-x)¹/₂=x+1
x = -4 is the extraneous solution of the equation.
The equation is
(5 - x )^1/2 = x + 1
To find the extraneous solution first we need to find the value of x.
So we need to square on both sides of the equation
[tex](\sqrt{5- x})^{2}[/tex] = [tex](x + 1)^{2}[/tex]
5 - x = [tex]x^{2}[/tex] +2x + 1
[tex]x^{2}[/tex] + 3x - 4= 0
[tex]x^{2}[/tex] + 4x - x - 4 = 0
x( x + 4 ) - 1 ( x + 4) = 0
( x + 4)( x - 1) =0
x = -4, 1
Now put both the value of x in the solution in the equation.
x = -4
[tex]\sqrt{5 - (-4)}[/tex] = -4 + 1
[tex]\sqrt{9}[/tex] = -3
3≠ -3
Now put
x = 1
[tex]\sqrt{5 -1}[/tex] = 1 +1
[tex]\sqrt{4}[/tex] = 2
2 = 2
Therefore we get that x = -4 is the extraneous solution of the equation and x = 1 is the solution of the equation.
To know more about the extraneous solution of the equation refer to the link given below:
https://brainly.com/question/12361474
#SPJ4