Answer:
=7.5J
Explanation:
Step one:
given data
the applied force F=5N
the distance = 1.5m
Step two:
Required
work done by Jolie
Now by definition, the work done is the applied times the distance which the force is applied
Wd= F*D
Wd= 5*1.5
Wd=7.5J
If she uses a force of 5N to lift 150 pounds to a height of 1.5m, the work done will be 7.5J
<
Question
An airplane flies eastward and always accelerates at a constant rate. At one position along its path, it has a velocity of
32.7 m/s. It then flies a further distance of 44500 m, and afterwards, its velocity is 50.3 m/s. Find the
airplane's acceleration
acceleration:
.016m/s2
Calculate how much time clapses while the airplane covers those 44500 m
about us
Careers
privacy policy
Terms of Use
contact us
help
49 ENG
1:45 PM
9/17/2020
Answer:
Explanation:
initial velocity u = 32.7 m /s
final velocity v = 50.3 m /s
displacement s = 44500 m
acceleration a = ?
v² = u² + 2 a s
50.3² = 32.7² + 2 x a x 44500
2530.09 = 1069.29 + 89000a
a .016 m /s²
time taken t = ?
v = u + at
50.3 = 32.7 + .016 t
t = 1100 s
You are lifting a 10 kg block straight up at a constant speed of 10 m/s. How much force are you exerting on the block?
Answer:
The force exerted is [tex]F = 100 \ N[/tex]
Explanation:
From the question we are told that
The mass of the block is [tex]m_b = 10 \ kg[/tex]
The speed is [tex]v = 10 \ m/s[/tex]
Generally the force exerted to lift the object at constant speed is equivalent to the wight of the ball, this is mathematically represented as
[tex]F = m * g[/tex] Here [tex]g = 10 \ m/s^2[/tex]
=> [tex]F = 10 * 10[/tex]
=> [tex]F = 100 \ N[/tex]
The force are you exerting on the block when the block is lifting straight up with constant speed is 98 N and this can be determined by using the given data.
Given :
You are lifting a 10 kg block straight up at a constant speed of 10 m/s.
The following steps can be used in order to determine the force are you exerting on the block:
Step 1 - According to the given data, the block is lifting straight up at a constant speed. So, the acceleration is zero.
Step 2 - So, the only force exerted on the block is the weight of the block.
Step 3 - So, the force are you exerting on the block is given by:
F = mg
F = 10 [tex]\times[/tex] 9.8
F = 98 N
For more information, refer to the link given below:
https://brainly.com/question/2996858
Question 1 of 5
In which way are electromagnetic waves different from mechanical waves?
Answer:
Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.
Explanation:
Answer:
In which way are electromagnetic waves different from mechanical waves?Electromagnetic waves can travel through empty space
Explanation:
I took A P E X Quiz.
Which type of mass movement is likely to result in considerable property damage, but rarely causes loss of life? a. debris avalanche b. rock fall c. mudflow d. creep
Answer:
The correct answer is D. Creep.
Explanation:
Ground creep is a slow downward movement of a hill or mountain slope without the formation of demolition forms. The decisive factor for this is the continuous flow of movement of the soil.
The main driver of collapse is the movement of the surface layer particles during expansion in a direction perpendicular to the slope, followed by vertical collapse on contraction. The visible effect of the collapsing is the inclination of fences and poles, as well as trees that grow out of the ground towards the slope and have trunks curved vertically, in more extreme cases it may be cracks on the walls of buildings.
A wire carries a current of 11.4 A in a direction that makes an angle of 11.4° with a magnetic field of magnitude 11.4 à 10-3 T. The magnitude of the force on 11.4 cm of this wire is:____.a) 11.4 * 10^-3 N
b) 0.130 N
c) 1.48 * 10^-2 N
d) 2.93 * 10^-3 N
Answer:
(d) 2.93 x 10⁻³ N
Explanation:
Given;
current in the wire, I = 11.4 A
angle of inclination, θ = 11.4⁰
magnetic field on the wire, B = 11. 4 x 10⁻³
length of the wire, L = 11.4 cm = 0.114 m
The magnitude of magnetic force on the wire is given by;
F = BILsinθ
F = (11.4 x 10⁻³)(11.4)(0.114)(sin 11.4°)
F = 0.00293 N
F = 2.93 x 10⁻³ N
Therefore, the correct option is "D"
A spaceship of mass mm circles a planet of mass M in an orbit of radius R. How much energy is required to transfer the spaceship to a circular orbit of radius 3R?
Answer:
ΔE = GmM/3R
Explanation:
The absolute potential energy of an object in a planet's field is given as:
E = -GmM/2r
where,
E = Potential Energy
G = Universal Gravitational Constant
m = mass of spaceship
M = Mass of Planet
r = distance from surface of planet
Therefore, for initial state:
E = E₁ and r = R
E₁ = - GmM/2R
and for final state:
E = E₂ and r = 3R
E₂ = - GmM/6R
So, the required energy will be:
ΔE = E₂ - E₁ = - GmM/6R + GmM/2R
ΔE = GmM(- 1/6R + 1/2R)
ΔE = GmM/3R
A 6.0-kilogram cart initially traveling at 4.0 meters per second east accelerates uniformly at 0.50 meter per second squared east for 3.0 seconds. What is the speed of the cart at the end of this 3.0 second interval? A. 1.5 m/s B. 5.5 m/s G. 3.0 m/s D. 7.0 m/s
Answer: 5.5m/s
Explanation:
vf=vi+at
vf= 4.0m/s + (0.50m/s^2)(3.0s)
The speed of the cart at the end of this 3.0 second interval is 5.5 meter per seconds.
Given the following data:
Initial velocity = 4 m/sMass of cart = 6 KgAcceleration = 0.5 [tex]m/s^2[/tex]Time = 3 secondsTo find the speed of the cart at the end of this 3.0 second interval, we would use the first equation of motion;
[tex]V = U + at[/tex]
Where:
U is the initial velocity.V is the final velocity. a is the acceleration. t is the time measured in seconds.Substituting the given parameters into the formula, we have;
[tex]V = 4 + 0.5(3)\\\\V = 4 + 1.5[/tex]
Final velocity, V = 5.5 m/s.
Therefore, the speed of the cart at the end of this 3.0 second interval is 5.5 meter per seconds.
Read more: https://brainly.com/question/8898885
find the fundamental units involved in derived units
newton
watt
joule
pascal
cubic meter
9ycy8c8t 7f fixfuozofuxt8lsrupsurpaurae6pUeoUe6eoUeFipzuroz6d0, 7d0z6e0z7e0zurpz6e0z
Explanation:
force newton N - m·kg·s-2
pressure, stress pascal Pa N/m2 m-1·kg·s-2
energy, work, quantity of heat joule J N·m m2·kg·s-2
power, radiant flux watt W J/s m2·kg·s-3
volume cubic meter m3
3. Sarah drops a 10.0 kg objed from a 200 m high bridge over a river. a) What work is done by the objec as a result of its fall?
Which of the following descriptions best describe a liquid
A
takes the shape and volume of its container
B
matter is made of atoms so tightly packed together that they cannot move around
C
has a definite volume, but takes the shape of its container
Answer:
C
Explanation:
Why are the coral reefs suffering? (site 2) explain
Answer:
bcuz ov yo fat mamma
Explanation:
Answer:
Water pollution
Explanation:
The spring constant, k, for a 22cm spring is 50N/m. A force is used to stretch the spring and when it is measured again it is 32cm long. Work out the size of this force
Answer:
5N
Explanation:
Given parameters:
Original length = 22cm
Spring constant, K = 50N/m
New length = 32cm
Unknown
Force applied = ?
Solution:
The force applied on a spring can be derived using the expression below;
Force = KE
k is the spring constant
E is the extension
extension = new length - original length
extension = 32cm - 22cm = 10cm
convert the extension from cm to m;
100cm = 1m;
10cm will give 0.1m
So;
Force = 50N/m x 0.1m = 5N
Squid use jet propulsion for rapid escapes. A squid pulls water into its body and then rapidly ejects the water backward to propel itself forward. A 1.5 kg squid (not including water mass) can accelerate at 20 m/s2 by ejecting 0.15 kg of water. Part A What is the magnitude of the thrust force on the squid
Answer: see attachment
Explanation:
True or False. A projectile is an object that once set in motion, continues in motion by its own inertia.
A 7.50 kg bowling ball has 70.4
kg•m/s of momentum. What is its
velocity?
Answer:
9.39 m/sExplanation:
The velocity of the bowling ball can be found by using the formula
[tex]v = \frac{p}{m} \\ [/tex]
p is the momentum
m is the mass
From the question we have
[tex]v = \frac{70.4}{7.5} \\ = 9.38666666..[/tex]
We have the final answer as
9.39 m/sHope this helps you
An object that moves in uniform circular motion has a centripetal acceleration of 13 m/s^2 . If the radius of the motion is 0.02m, what is the frequency of motion?
Answer:
f = 3.97 Hz
Explanation:
Given that,
Centripetal acceleration, [tex]a=13\ m/s^2[/tex]
The radius of motion is 0.02 m
The formula for the centripetal acceleration is given by :
[tex]a=\dfrac{v^2}{r}\\\\v=\sqrt{ar} \\\\v=\sqrt{13\times 0.02} \\\\v=0.5\ m/s[/tex]
The speed of an object in a circular path is given by :
[tex]v=\dfrac{2\pi r}{t}[/tex]
t is time period
Also, f=1/t (f is frequency)
[tex]f=\dfrac{v}{2\pi r}\\\\f=\dfrac{0.5}{2\pi \times 0.02}\\\\f=3.97\ Hz[/tex]
Hence, the frequency of motion s 3.97 Hz.
The frequency of the motion is 4.1 Hz.
Linear velocity?The linear velocity of the of the object is calculated as follows;
[tex]a = \frac{v^2}{r} \\\\v^2 = ar\\\\v = \sqrt{ar} \\\\v = \sqrt{13 \times 0.02} \\\\v = 0.51 \ m/s[/tex]
Angular speed of the objectThe angular speed of the object is calculated as follows;
[tex]\omega =\frac{v}{r} \\\\\omega = \frac{0.51}{0.02} \\\\\omega = 25.5 \ rad/s[/tex]
Frequency of motionThe frequency of the motion is calculated as follows;
[tex]\omega = 2\pi f\\\\f = \frac{\omega }{2\pi} \\\\f = \frac{25.5}{2\pi } \\\\f = 4.1 \ Hz[/tex]
Thus, the frequency of the motion is 4.1 Hz.
Learn more about frequency of the circular motion here: https://brainly.com/question/20481765
Which environment is least likely to support protists
A soil
B open ocean
C shallow pod
D organisms blood
Answer:
A: Soil
Explanation:
Protists need a moist environment to survive, and shallow ponds, oceans, and blood is all moist. So, the answer would be the soil, because that is the least moist environment out of these options.
a vertical solid steel post 29cm in diameter and 2.0m long is required to support a load of 8200kg, ignore the weight of the post. determine the stress in the post
Answer:
The stress is [tex]\sigma = 1.218*10^{6} \ N/m^2[/tex]
Explanation:
From the question we are told that
The diameter of the post is [tex]d = 29 \ cm = 0.29 \ m[/tex]
The length is [tex]L = 2.0 \ m[/tex]
The weight of the loading mass
Generally the radius of the post is mathematically represented as
[tex]r = \frac{0.29}{2}[/tex]
=> [tex]r = 0.145 \ m[/tex]
Generally the area of the post is
[tex]A = \pi r^2[/tex]
=> [tex]A = 3.14 * 0.145 ^2[/tex]
=> [tex]A = 0.066 \ m^2[/tex]
Generally the weight exerted by the load is mathematically represented as
[tex]F = m * g[/tex]
=> [tex]F = 8200 * 9.8[/tex]
=> [tex]F = 80360 \ N[/tex]
Generally the stress is mathematically represented as
[tex]\sigma = \frac{F}{A}[/tex]
=> [tex]\sigma = \frac{80360 }{0.066}[/tex]
=> [tex]\sigma = 1.218*10^{6} \ N/m^2[/tex]
A displacement vector with a magnitude of 20. meters could have perpendicular components with magnitudes of A. 10. m and 10. m B. 12 m and 8.0 m 12 m and 16 m D. 16 m and 8.0 m
Answer:10.m and 10. M
Explanation:
A displacement vector with a magnitude of 20. m could have perpendicular components with magnitudes of C. 12 m and 16 m.
A displacement vector with a magnitude of 20. meters can be decomposed in 2 perpendicular components.
They would form a right triangle, in which the displacement vector would be the hypotenuse (a) and the components would be the legs (b, c).
Given the magnitude of the legs, we can calculate the magnitude of the hypotenuse using the Pythagorean theorem.
[tex]c = \sqrt{a^{2} + b^{2} }[/tex]
Let's use this formula to calculate the displacement vector for each pair of legs.
A. 10. m and 10. m[tex]c = \sqrt{a^{2} + b^{2} } = \sqrt{(10.m)^{2} + (10.m)^{2} }= 14.1m[/tex]
B. 12 m and 8.0 m[tex]c = \sqrt{a^{2} + b^{2} } = \sqrt{(12m)^{2} + (8.0m)^{2} }= 14.4m[/tex]
C. 12 m and 16 m[tex]c = \sqrt{a^{2} + b^{2} } = \sqrt{(12m)^{2} + (16m)^{2} }= 20m[/tex]
D. 16 m and 8.0 m[tex]c = \sqrt{a^{2} + b^{2} } = \sqrt{(16m)^{2} + (8.0m)^{2} }= 17.9m[/tex]
A displacement vector with a magnitude of 20. m could have perpendicular components with magnitudes of C. 12 m and 16 m.
Learn more: https://brainly.com/question/16426393
What specific changes in two climate variables are expected to lead to major decreases in soil moisture southern Africa and the Mediterranean region?
Answer:
Less precipitation, droughts9: How might agriculture in southern Europe change by the end of the century if conditions follow the RCP8.
Explanation:
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture.
What is drought?
Drought is defined as a period of protracted water scarcity, whether it is due to atmospheric surface water, or groundwater constraints.
Droughts can last months or years, although they can be proclaimed in as little as 15 days.
It has the potential to have a significant influence on the afflicted region's ecology and agriculture as well as harm the local economy.
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture in southern Africa and the Mediterranean region.
Hence Precipitation and droughts are the specific changes in two climate variables.
To learn more about the drought refer to the link;
https://brainly.com/question/26693108
The speed of a space shuttle is 10 / express this in /�
Answer:
268.22m/s
Explanation:
Given;
10mile/min to m/s
We need to convert between the two units;
1 mile = 1609.34m
60s = 1min
Now;
10 x [tex]\frac{mile}{min}[/tex] x [tex]\frac{1min}{60s}[/tex] x [tex]\frac{1609.34m}{1mile}[/tex]
= 268.22m/s
The following is the longitudinal characteristic equation for an F-89 flying at 20,000 feet at Mach 0.638. The Short Period natural frequency is _____.
Answer:
hello your question is incomplete attached below is the missing part
answer : short period oscillations frequency = 0.063 rad / sec
phugoid oscillations natural frequency ( [tex]w_{np}[/tex] ) = 4.27 rad/sec
Explanation:
first we have to state the general form of the equation
= [tex]( S^2 + 2\alpha _{p} w_{np} S + w^{2} _{np} ) (S^{2} + 2\alpha _{s} w_{ns}S + w^{2} _{ns} ) = 0[/tex]
where :
[tex]w_{np} = Natural frequency of plugiod oscillation[/tex]
[tex]\alpha _{p} = damping ratio of plugiod oscilations[/tex]
comparing the general form with the given equation
[tex]w^{2} _{np}[/tex] = 18.2329
[tex]w^{2} _{ns} = 0.003969[/tex]
hence the short period oscillation frequency ( [tex]w_{ns}[/tex] ) = 0.063 rad/sec
phugoid oscillations natural frequency ( [tex]w_{np}[/tex] ) = 4.27 rad/sec
when is thermal equilibrium achived between two identical objects
need help ASAP
Answer: When two objects in contact with each other are at different temperatures, they are said to be in thermal equilibrium.
Explanation: . When two objects not in contact with each other are at the same pressure, they are said to be in thermal equilibrium.
Two tiny conducting spheres are identical and carry charges of -20μC and +50μC. They are separeted by a distance of 2.50cm. (a) what is the magnitude of the force that each sphere each sphere experience, and is the force attractive or repulsive ? (b) The spheres are brought into contact and then separated toa distance of 2.50cm. Determine the magnitude of the force that each sphere now experiences, and state whether the force is attractive or repulsive.
Answer:
[tex]14400\ \text{N}[/tex], Attractive
[tex]3240\ \text{N}[/tex], Repulsive
Explanation:
[tex]q_1[/tex] = -20 μC
[tex]q_2[/tex] = 50 μC
r = Distance between the charges = 2.5 cm
k = Coulomb constant = [tex]9\times 10^9\ \text{Nm}^2/\text{C}^2[/tex]
Electrical force is given by
[tex]F=\dfrac{kq_1q_2}{r^2}\\\Rightarrow F=\dfrac{9\times 10^9\times (-20\times 10^{-6})\times (50\times 10^{-6})}{(2.5\times10^{-2})^2}\\\Rightarrow F=-14400\ \text{N}[/tex]
The magnitude of force each sphere will experience is [tex]14400\ \text{N}[/tex]
Since the charges have opposite charges they will attract each other.
Now the charges are brought into contact with each other so the resultant charge will be
[tex]q=\dfrac{q_1+q_2}{2}\\\Rightarrow q=\dfrac{-20+50}{2}\\\Rightarrow q=15\ \mu\text{C}[/tex]
[tex]F=\dfrac{kq^2}{r^2}\\\Rightarrow F=\dfrac{9\times 10^9\times (15\times 10^{-6})^2}{(2.5\times 10^{-2})^2}\\\Rightarrow F=3240\ \text{N}[/tex]
The magntude of the force the spheres experience will be [tex]3240\ \text{N}[/tex]
The spheres have the same charge now so they will repel each other.
When a mass of a cart is 10 kg, and an applied force is 5 N, The acceleration of the cart is
5.0 m/s2
2.0 m/s2
0.5 m/s2
0.2 m/s2
Answer:
0.5 m/s2
Explanation:
F = ma
5 = 10a
a = 5/10
a =0.5
22. What happens to the volume of a 1 kg of water when it is heated from 4oC to 6oC? A. Increases B. Decreases C. Stays the same
Answer:
a
Explanation:
..................
1. When asteroids collided some of the broken materials fall into Earth's orbit. What do
astronomers call the debris when it hits planet Earth?
Answer:
meteoroids
Explanation:
when an asteroid (or really anything else) falls to earth, it is called a meteoroid
A crossbow is fired horizontally off a cliff with an initial velocity of 15 m/s. If the arrow takes 4s to hit the ground, what is the range of the projectile?
Answer:
The range of the projectile is 60 m
Explanation:
Horizontal Motion
When an object is thrown horizontally with a speed vo from a height h, it describes a curved path ruled exclusively by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
[tex]v_x=v_o[/tex]
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:
[tex]v_y=g.t[/tex]
The horizontal distance is calculated as a constant speed motion:
[tex]x = v_x.t[/tex]
Knowing the crossbow is fired horizontally at vo=vx=15 m/s and it takes t=4 s to hit the ground, thus the range of the projectile is:
x = 15*4 = 60
The range of the projectile is 60 m
Block A is also connected to a horizontally-mounted spring with a spring constant of 281 J/m2. What is the angular frequency (in rad/s) of simple harmonic oscillations of this system?
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, the formula to be used here is
ω = 2π/T
Where ω is the angular frequency (in rad/s)
T is the period - the time taken for Block A to complete one oscillation and return to it's original position.
To solve for this period T, the formula below should be used
T = 2π√m/k
where m is the mass of the object (Block A) and k is the spring constant (281 J/m²)
A motorcycle moving at a constant velcoity suddenly accelerates at a rate of 4.0 m/s/s to a speed of 35 m/s in 5.0 s. What was the initial speed of the motorcycle?
Answer:
15 m/s
Explanation:
v = u+ at
35 = u + 20
35-20 = u
u= 15 m/s