Two equal and opposite charges +q and -q are located on the x-axis x =-a and x=a the distance is 2a find the energy to separate these charges infinitely away from each other

Answers

Answer 1

The energy required to separate the charges infinitely away from each other is (4.49375 × 10⁹ N m²/C²) times the square of the magnitude of the charge (q²) divided by a.

The energy required to separate the charges +q and -q infinitely away from each other can be calculated using the formula for the electric potential energy:

U = k * (|q₁| * |q₂|) / r

where:

U = electric potential energy

k = Coulomb's constant (approximately 8.9875 × 10⁹ N m²/C²)

|q₁|, |q₂| = magnitudes of the charges (+q and -q, respectively)

r = separation distance between the charges

In this case, the charges +q and -q have equal magnitudes, so |q₁| = |q₂| = q. The separation distance between the charges is 2a.

Substituting the values into the formula, we have:

U = (8.9875 × 10⁹ N m²/C²) * (q² / a)

U = (4.49375 × 10⁹ N m²/C²) * (q² / a)

Therefore, the energy is (4.49375 × 10⁹ N m²/C²)(q² / a)

Learn more about  energy here:

https://brainly.com/question/31321392

#SPJ11


Related Questions

a single turn current loop carrying a current of 4.08 a, is in the shape of a right triangle with sides 41.3, 135, and 141 cm. the loop is in a uniform magnetic field of magnitude 61.6 mt whose direction is parallel to the current in the 141 cm side of the loop. what is the magnitude of the magnetic force (a) the 141 cm side (b) the 41.3 c

Answers

The magnitude of the magnetic force on the 141 cm side of the loop is 0, while the magnitude of the magnetic force on the 41.3 cm side is approximately 0.106 Newtons.

To calculate the magnitude of the magnetic force on the current loop, we can use the formula for the magnetic force on a current-carrying wire in a magnetic field:

F = [tex]I*L*B Sin[/tex]Ф

where:

F is the magnitude of the magnetic force

I is the current in the wire

L is the length of the wire segment

B is the magnitude of the magnetic field

theta is the angle between the wire and the magnetic field

(a) For the 141 cm side:

Using the given values:

I = 4.08 A

L = 141 cm

L = 1.41 m

B = 61.6 mT

B= 0.0616 T

Ф= 0 degrees (since the magnetic field is parallel to the current in the 141 cm side)

Plugging in the values into the formula:

F = 4.08 A * 1.41 m * 0.0616 T * sin(0°)

F = 0

Therefore, the magnitude of the magnetic force on the 141 cm side of the loop is 0.

(b) For the 41.3 cm side:

Using the given values:

I = 4.08 A

L = 41.3 cm = 0.413 m

B = 61.6 mT = 0.0616 T

Ф = 90 degrees (since the magnetic field is perpendicular to the current in the 41.3 cm side)

Plugging in the values into the formula:

F = 4.08 A * 0.413 m * 0.0616 T * sin(90°

F = 0.106 N

Therefore, the magnitude of the magnetic force on the 41.3 cm side of the loop is approximately 0.106 Newtons.

In conclusion, the magnitude of the magnetic force on the 141 cm side of the loop is 0, while the magnitude of the magnetic force on the 41.3 cm side is approximately 0.106 Newtons.

To know more about current visit:

https://brainly.com/question/1100341

#SPJ11

A car initially at rest experiences a constant acceleration along a horizontal road. The position of the car al several successive equal time intervals is illustrated here. Between which adjacent positions is the change in kinetic energy of the car the greatest?
(A) 1 and 2
(B) 2 and 3
(C) 3 and 4
(D) The change is the same for all adjacent pairs.

Answers

(B) The change in kinetic energy of the car is greatest between positions 2 and 3.

Determine the change of kinetic energy?

The change in kinetic energy of an object is given by the formula:

ΔKE = (1/2) * m * (v₂² - v₁²),

where ΔKE is the change in kinetic energy, m is the mass of the object, v₁ is the initial velocity, and v₂ is the final velocity.

Since the car experiences a constant acceleration, its velocity increases uniformly over time. Looking at the given positions, we can observe that the car's velocity is increasing at a faster rate between positions 2 and 3 compared to the other positions.

Therefore, the change in kinetic energy is greatest between positions 2 and 3.

In positions 1 and 2, the car is still accelerating and gaining velocity, but the rate of increase is lower than between positions 2 and 3. Similarly, in positions 3 and 4, the car is still accelerating, but the rate of increase is lower compared to between positions 2 and 3.

Hence, the change in kinetic energy is greatest between positions (B) 2 and 3.

To know more about acceleration, refer here:

https://brainly.com/question/2303856#

#SPJ4

After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 45.0 cm. She finds the pendulum makes 95.0 complete swings in a time of 130s.what is the value of g on this planet?g= ______ m/s^2?

Answers

The value of g on the unfamiliar planet is approximately 2.859 m/s² .the value of acceleration due to gravity (g) on the unfamiliar planet, we can use the equation for the period of a simple pendulum:

T = 2π√(L/g),

where T is the period of the pendulum, L is the length of the pendulum, and g is the acceleration due to gravity.

In this case, we know that the period of the pendulum is the time it takes for one complete swing, which is given as 130 seconds. The length of the pendulum is 45.0 cm (or 0.45 meters). The number of complete swings, 95.0, is not needed for this calculation.

Let's substitute the known values into the equation:

130 = 2π√(0.45/g).

To find the value of g, we need to isolate it on one side of the equation. We can start by dividing both sides by 2π:

130/(2π) = √(0.45/g).

Next, square both sides of the equation to eliminate the square root:

(130/(2π))^2 = 0.45/g.

Now, we can rearrange the equation to solve for g:

g = 0.45/((130/(2π))^2).

Evaluating this expression will give us the value of g on the unfamiliar planet:

g ≈ 2.859 m/s².

Learn more about pendulum visit:

https://brainly.com/question/26449711

#SPJ11

Two protons and an electron are fixed on the corners of a rectangle, as shown. One proton is at (0 nm, 1.75 nm) and the other proton is at (1.15 nm, 0 nm). The electron is fixed at (1.15 nm, 1.75 nm). What is the angle made by the force on the electron due to the two protons, measured with respect to the +x axis?
A. 247°
B. 293°
C. 203°
D. 66.6°
E. 23.3°

Answers

To find the angle made by the force on the electron due to the two protons, we can use trigonometry.

First, we need to find the distances between the electron and each proton. Let's denote the position of the electron as E, the first proton as P1, and the second proton as P2.

The distance between E and P1 is given by:

d1 = sqrt((x1 - xE)^2 + (y1 - yE)^2)

where (x1, y1) are the coordinates of P1 and (xE, yE) are the coordinates of the electron.

Similarly, the distance between E and P2 is given by:

d2 = sqrt((x2 - xE)^2 + (y2 - yE)^2)

where (x2, y2) are the coordinates of P2.

Using the given coordinates, we have:

d1 = sqrt((0 - 1.15)^2 + (1.75 - 1.75)^2) = 1.15 nm

d2 = sqrt((1.15 - 1.15)^2 + (0 - 1.75)^2) = 1.75 nm

Next, we can calculate the angle between the force on the electron and the +x axis using the law of cosines. Let's denote this angle as θ.

cos(θ) = (d1^2 + d2^2 - d3^2) / (2 * d1 * d2)

where d3 is the distance between P1 and P2, which is given by:

d3 = sqrt((x2 - x1)^2 + (y2 - y1)^2) = sqrt((1.15 - 0)^2 + (0 - 1.75)^2) = sqrt(3.3^2 + 1.75^2) = sqrt(14.245) = 3.77 nm

Substituting the values, we have:

cos(θ) = (1.15^2 + 1.75^2 - 3.77^2) / (2 * 1.15 * 1.75)

cos(θ) = (-2.3575) / (4.015)

Taking the inverse cosine, we find:

θ = cos^(-1)(-0.5867) ≈ 123.3°

However, this angle is measured with respect to the +x axis, so we need to subtract it from 180° to get the angle made by the force on the electron.

Angle = 180° - 123.3° ≈ 56.7°

Therefore, the angle made by the force on the electron due to the two protons, measured with respect to the +x axis, is approximately 56.7°.

Learn more about force from

https://brainly.com/question/12785175

#SPJ11

For a 7 stage MIPS execution pipeline, compute the theoretical maximum speed up. Explain what a pipeline hazard is?

Answers

The theoretical maximum speedup of a pipeline can be calculated using the formula:

Maximum Speedup = Number of Stages

In this case, the pipeline has 7 stages, so the theoretical maximum speedup would be 7.

A pipeline hazard refers to a situation in a pipeline where the normal flow of instructions is interrupted or delayed, leading to a decrease in performance or efficiency. Pipeline hazards can occur due to dependencies between instructions or conflicts in resource usage. There are three types of pipeline hazards:

Structural hazards: These occur when multiple instructions require the same hardware resource at the same time. For example, if two instructions need to access the same register or memory location simultaneously.

Data hazards: These occur when an instruction depends on the result of a previous instruction that has not yet completed. Data hazards can be further classified into three types: read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW) hazards.

Control hazards: These occur due to changes in the program flow, such as branches or jumps. Control hazards can result in the pipeline incorrectly predicting the next instruction, leading to wasted cycles.

To mitigate pipeline hazards, techniques like forwarding, branch prediction, and instruction scheduling can be employed. These techniques aim to minimize stalls and ensure smooth execution of instructions in the pipeline, thereby improving overall performance.

Learn more about theoretical here

https://brainly.com/question/11555274

#SPJ11

some incandescent light bulbs are filled with argon gas. what is for argon atoms near the filament, assuming their temperature is 2500 k?

Answers

The average speed for argon atoms near the filament of an incandescent light bulb, assuming their temperature is 2500 K, is approximately 1578 m/s.

Determine what are the argon atoms near the filament?

The average speed of gas molecules can be calculated using the root mean square speed formula:

v_avg = √((3 * k * T) / m),

where v_avg is the average speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas.

For argon (Ar) gas, the molar mass is approximately 39.95 g/mol. Converting it to kg/mol, we get 0.03995 kg/mol. Plugging in the values, including the temperature of 2500 K, into the formula, we can calculate the average speed.

v_avg = √((3 * (1.38 * 10⁻²³ J/K) * 2500 K) / 0.03995 kg/mol)

     ≈ 1578 m/s.

Therefore, the average speed for argon atoms near the filament, assuming a temperature of 2500 K, is approximately 1578 m/s.

To know more about molecules, refer here:

https://brainly.com/question/32298217#

#SPJ4

a physics book is moved once around the perimeter of a table with dimensions 1 meter by 2 meters. if the book ends up at the initial position, what is the magnitude of the displacement?

Answers

The magnitude of displacement can be determined by finding the shortest distance between the initial and final positions. In this case, the book ends up at the initial position, which means the displacement is zero.

Since the book returns to its initial position, the overall displacement is zero, indicating that the book has covered a closed path or a complete loop around the table. Although the book has traveled a distance equal to the perimeter of the table (6 meters in this case), the net displacement is zero since it ends up at the same point it started from.

Therefore, the magnitude of the displacement is zero.

Learn more about magnitude of the displacement  here:

https://brainly.com/question/28016627

#SPJ11

a tennis player swings her 1000 gg racket with a speed of 10.0 m/sm/s. she hits a 60 gg tennis ball that was approaching her at a speed of 16.0 m/sm/s. the ball rebounds at 42.0 m/sm/s.A) How fast is her racket moving immediately after the impact? You can ignore the interaction of the racket with her hand for the brief duration of the collision.
_________m/s

Answers

To determine the speed of the tennis player's racket immediately after the impact with the tennis ball, we can apply the law of conservation of momentum. The total momentum before the impact should be equal to the total momentum after the impact.

The initial momentum of the racket is given by the product of its mass and velocity, which is (1000 gg) * (10.0 m/s) = 10,000 kg∙m/s.

The initial momentum of the tennis ball is (60 gg) * (16.0 m/s) = 960 kg∙m/s.

The final momentum of the tennis ball after the rebound is (60 gg) *(42.0 m/s) = 2,520 kg∙m/s.

Since momentum is conserved, the final momentum of the racket and the ball together must also be 2,520 kg∙m/s.

Let's denote the final velocity of the racket as 'v_racket'. We can write the equation as follows:

10,000 kg∙m/s + 960 kg∙m/s = (1000 gg + 60 gg) * v_racket

10,960 kg∙m/s = 1060 gg * v_racket

Simplifying the equation, we find:

v_racket = (10,960 kg∙m/s) / (1060 gg) ≈ 10.34 m/s

Therefore, the speed of the tennis player's racket immediately after the impact is approximately 10.34 m/s.

Learn more about momentum at:

brainly.com/question/30487676

#SPJ11

Which of the following can be interpreted as a measure of randomness?
A Temperature
B. Free energy
C. Enthalpy
D. Entropy

Answers

Among the given options, Entropy can be interpreted as a measure of randomness in a system. The correct answer is option D.

Entropy is a thermodynamic property that quantifies the disorder or randomness in a system. It is related to the number of ways the particles in a system can be arranged, and a higher entropy value indicates a more random distribution of particles.

Temperature (A) is a measure of the average kinetic energy of particles, Free energy (B) is the energy available to do useful work, and Enthalpy (C) is the total energy of a system. While these properties are important in understanding a system's behavior, it is Entropy (D) that specifically measures the randomness of a system.

Learn more about Entropy here:

https://brainly.com/question/20166134

#SPJ11

A horizontal meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging
from it at the 20-cm mark and a 0.30 kg mass hanging from it at the 60-cm mark.
Determine the position on the meter stick at which one would hang a third mass of 0.60
kg to keep the meter stick balanced.
a.) 74 cm
b.) 70 cm
c.) 65 cm
d.) 86 cm
e.) 62 cm

Answers

To keep the meter stick balanced option b) 70 cm  would hang a third mass of 0.60'

What is mass ?

One οf a bοdy's fundamental characteristics is mass. Befοre the discοvery οf the atοm and particle physics, it was widely cοnsidered tο be cοnnected tο the amοunt οf matter in a physical bοdy. Theοretically having the same quantity οf substance, it was discοvered that distinct atοms and elementary particles have varying masses.

Several cοnceptiοns οf mass exist in cοntempοrary physics, all οf which are physically equivalent while cοnceptually differing. The resistance οf the bοdy tο acceleratiοn (change οf velοcity) when a net fοrce is applied is knοwn as inertia, and inertia may be measured experimentally using mass. The magnitude οf an οbject's gravitatiοnal pull οn οther bοdies is alsο gοverned by its mass.

To keep the meter stick balanced, the torques on both sides of the pivot point must be equal. The torque is calculated as the product of the weight (mg) and the perpendicular distance from the pivot point.

The correct option is b) 70 cm

0.5 kg at 20 cm

0.3 kg at 60 cm

x = Distance of the third 0.6 kg mass

Meter stick hanging at 50 cm

Torque about the support point is given by (torque is conserved)

The position of the third mass of 0.6 kg is at 20+50 = 70 cm

To learn more about mass , visit.

https://brainly.com/question/11954533

#SPJ4

rotation is the lateral (up, down, right, left, in, out) movement of every point in an object by the same amount and in the same direction. true or false

Answers

Rοtatiοn is the lateral (up, dοwn, right, left, in, οut) mοvement οf every pοint in an οbject by the same amοunt and in the same directiοn , is false

What is rοtatiοn?  

During rοtatiοn, all pοints in the οbject mοve alοng circular paths arοund the axis οf rοtatiοn. Each pοint in the οbject fοllοws a specific angular displacement, but there is nο lateral οr translatiοnal mοvement invοlved.

In cοntrast, lateral mοvements (up, dοwn, right, left, in, οut) cοrrespοnd tο translatiοns οr displacements οf an οbject in different directiοns withοut any rοtatiοnal mοvement.

Rοtatiοn is nοt the lateral (up, dοwn, right, left, in, οut) mοvement οf every pοint in an οbject. Instead, rοtatiοn refers tο the circular οr angular mοvement οf an οbject arοund a central pοint οr axis. It invοlves the turning οr spinning οf an οbject withοut any lateral displacement οf its pοints. Therefοre, it is False.

To learn more about rotation, visit.

https://brainly.com/question/1571997

#SPJ4

consider the nuclear reaction 21h 147n→x 105b where x is a nuclide.

Answers

The nuclear reaction you provided is an example of a fusion reaction, where two lighter nuclei combine to form a heavier nucleus. In this specific case, one hydrogen-2 (deuterium) nucleus (symbolized as 2H or D) and one nitrogen-14 nucleus (symbolized as 14N) combine to form an unknown nucleus with atomic number 105 and mass number around 147.

To determine the identity of the product nucleus X, we can use conservation of mass number and conservation of atomic number. The sum of the mass numbers on both sides of the equation must be equal, as well as the sum of the atomic numbers.

On the left side, we have:

mass number: 2 + 14 = 16

atomic number: 1 + 7 = 8

On the right side, the mass number is around 147, which means that:

mass number: 16 = around 147

This indicates that the mass number of the unknown nucleus is much larger than the sum of the mass numbers of the reactants. Thus, we can infer that several neutrons are involved in the process.

The atomic number of the product nucleus can be determined by conserving atomic number, which gives:

atomic number: 8 = x

Therefore, the product nucleus X has atomic number 8. By comparing it to the periodic table, we can identify it as oxygen, specifically the isotope oxygen-105.

Learn more about  mass from

https://brainly.com/question/86444

#SPJ11

each electron transfers its kinetic energy to the picture tube screen upon impact. what is the power delivered to the screen by the electron beam?

Answers

The power delivered to the screen by the electron beam depends on the current of the beam and the voltage applied to it.

The power delivered to the screen by the electron beam can be calculated using the formula P = IV, where P is the power, I is the current, and V is the voltage. The current of the beam is determined by the number of electrons in the beam and their speed, which is related to their kinetic energy.

The voltage applied to the beam is determined by the potential difference between the electron gun and the screen. Therefore, the power delivered to the screen is proportional to the product of the current and the voltage, which means that increasing either one will increase the power delivered to the screen.

However, there are also factors that can affect the efficiency of the electron beam, such as the focusing and deflection systems, which can reduce the amount of power delivered to the screen.

Learn more about electron beam here:

https://brainly.com/question/17026171

#SPJ11

Match the kinetic energy to the position of skater on the track

Answers

At the highest point of the track, the kinetic energy is zero. As the skater descends the track, the kinetic energy increases.

To match the kinetic energy to the position of a skater on a track, we need to understand how kinetic energy changes with respect to the skater's position. Kinetic energy is given by the equation:

KE = (1/2) * m * v^2

where KE is the kinetic energy, m is the mass of the skater, and v is the velocity of the skater.

At the highest point of the track: At the highest point of the track, the skater's potential energy is maximized while the kinetic energy is minimized. The skater is momentarily at rest at the highest point of the track, so the kinetic energy is zero.

Descending the track: As the skater descends the track, the potential energy decreases and is converted into kinetic energy. The skater's speed increases, resulting in an increase in kinetic energy. The kinetic energy is higher than at the highest point of the track but still less than the potential energy.

At the bottom of the track: At the bottom of the track, the skater's potential energy is minimized and converted entirely into kinetic energy. The skater's speed is at its maximum, resulting in the highest kinetic energy. The kinetic energy at the bottom of the track is the maximum.

Ascending the track: As the skater ascends the track, the potential energy increases while the kinetic energy decreases. The skater's speed decreases, resulting in a decrease in kinetic energy. The kinetic energy is lower than at the bottom of the track but still greater than at the highest point.

For more such questions on highest point visit;

https://brainly.com/question/30285676

#SPJ8

an electron is within a one-dimensiona, infinite potential well. which is true about the integral of the probability density from one wall to the other? the value of the integral decreases

Answers

The statement is incorrect. The integral of the probability density from one wall to the other is constant for a one-dimensional, infinite potential well.

In a one-dimensional, infinite potential well, the probability density of finding an electron is constant within the well and is zero outside the well. This means that the integral of the probability density from one wall to the other is constant and does not decrease.

The probability density can be found using the wave function of the electron, which is a solution to the Schrödinger equation for the infinite potential well. The wave function has standing wave patterns that correspond to different energy levels of the electron.

The probability density is the square of the absolute value of the wave function and represents the likelihood of finding the electron at a particular position. Therefore, the integral of the probability density from one wall to the other is a measure of the total probability of finding the electron within the well, which remains constant.

Learn more about wave function here:

https://brainly.com/question/29899150

#SPJ11

a generator is built using a square coil with 300 turns and sides of length 45 cm. it is spun in a magnetic field of magnitude 0.80 t at a frequency of 60.0 hz. what is the amplitude of the induced emf?

Answers

The amplitude of the induced EMF in a generator with a square coil of 300 turns, side length 45 cm, magnetic field magnitude 0.80 T, and frequency 60.0 Hz is 30.24 V.


1. Calculate the area of the square coil: A = side^2 = (0.45 m)^2 = 0.2025 m^2
2. Calculate the angular frequency: ω = 2πf = 2π(60 Hz) = 376.99 rad/s
3. Use Faraday's Law to calculate the induced EMF amplitude: |EMF| = NABωsin(ωt)
4. Since we're looking for the amplitude, we only need the maximum value, which occurs when sin(ωt) = 1.
5. Thus, |EMF|max = NABω = (300 turns)(0.2025 m^2)(0.80 T)(376.99 rad/s) = 30.24 V

The amplitude of the induced EMF is 30.24 volts.

Learn more about Faraday's Law here:

https://brainly.com/question/31783788

#SPJ11

please help me ?
physics

Answers

The wavelength of the first light is 5 x 10⁻⁶.

The wavelength of the second light is 6.5 x 10⁻⁶.

The wavelength of the third light is 4 x 10⁻⁶.

Grating constant, d = 5 x 10⁻⁵m

An optical element having a periodic structure that divides light into several beams that move in different directions is known as a diffraction grating.

It is an alternate method of using a prism to view spectra. Typically, the divided light will have a maximum at an angle when light is incident on the grating.

The expression for the diffraction grating is given by,

nλ = d sinθ

1) sinθ = 10 x 10⁻²/1 = 10⁻¹

So, the wavelength of the light is,

λ = d sinθ

λ = 5 x 10⁻⁵ x 10⁻¹

λ = 5 x 10⁻⁶m

2) sinθ = 13 x 10⁻²/1 = 1.3 x 10⁻¹

So, the wavelength of the light is,

λ = d sinθ

λ = 5 x 10⁻⁵x 1.3 x 10⁻¹

λ = 6.5 x 10⁻⁶m

3) sinθ = 8 x 10⁻²/1 = 8 x 10⁻²

So, the wavelength of the light is,

λ = d sinθ

λ = 5 x 10⁻⁵x 8 x 10⁻²

λ = 4 x 10⁻⁶m

To learn more about diffraction grating, click:

https://brainly.com/question/30409878

#SPJ1

A ball on a string moves around a complete circle, once a second, on a frictionless, horizontal table. The tension in the string is measured to be 12 . What would the tension be if the ball went around in only half a second? The tension in the string is measured to be 12 . What would the tension be if the ball went around in only half a second
A. 3.0
B. 6.0
C. 24
D. 48

Answers

The tension in the string of a ball moving in a circular path is given by the equation:

Tension = (mass * velocity^2) / radius

F_c = (m * v^2) / r

12 N = (m * v^2) / r

v' = (2 * π * r) / (0.5 s)

v' = 4 * π * r

In this case, the mass of the ball and the radius of the circle remain constant. We can assume that the mass is canceled out when comparing the tensions.

Given that the ball completes a full circle in 1 second, the velocity is v = 2πr / t, where t is the time taken to complete the circle and r is the radius of the circle.

For the first case (1 second), we have v₁ = 2πr / 1.

For the second case (0.5 seconds), we have v₂ = 2πr / 0.5.

Since the radius is the same for both cases, we can compare the tensions using the ratio of velocities squared:

T₂ / T₁ = (v₂^2) / (v₁^2) = (2πr / 0.5)^2 / (2πr / 1)^2 = (4) / (1) = 4.

Therefore, the tension in the string when the ball completes the circle in half a second is 4 times the tension when it completes the circle in one second.

Given that the initial tension is 12, the tension for the half-second case is:

T₂ = T₁ * 4 = 12 * 4 = 48.

Therefore, the correct answer is (D) 48.

Learn more about tension here

https://brainly.com/question/24994188

#SPJ11

a plum with a mass of 35g contains 30cal of nutritional energy. how many plums should a person consume to get 120cal of energy?

Answers

Answer: 4 plums

Explanation:

30 cals x 4 plums = 120cal energy

a 1.0 kg ball hits the floor with a velocity of 2.0 m/s and bounces back up with a velocity of 1.5 m/s. what is the balls change in momentum

Answers

A 1.0 kg ball hits the floor with a velocity of 2.0 m/s and bounces back up with a velocity of 1.5 m/s, the ball's change in momentum is -3.5 kg m/s.

The ball's change in momentum can be calculated using the formula:
change in momentum = final momentum - initial momentum
The initial momentum of the ball can be found using the formula:
initial momentum = mass x velocity
So, the initial momentum of the ball is:
initial momentum = 1.0 kg x 2.0 m/s = 2.0 kg m/s
The final momentum of the ball can also be found using the same formula:
final momentum = mass x velocity
So, the final momentum of the ball is:
final momentum = 1.0 kg x (-1.5 m/s) = -1.5 kg m/s
(Note that the negative sign indicates that the ball is moving in the opposite direction after bouncing back up.)
Therefore, the ball's change in momentum is:
change in momentum = final momentum - initial momentum
change in momentum = (-1.5 kg m/s) - (2.0 kg m/s)
change in momentum = -3.5 kg m/s
To know more about change in momentum, visit:

https://brainly.com/question/31707268

#SPJ11

what is the minimum energy needed to change the speed of a 1600-kg sport utility vehicle from 15.0 m/s to 40.0 m/s?

Answers

To find the minimum energy needed to change the speed of a vehicle, we can use the kinetic energy equation: Kinetic Energy (KE) = (1/2) * mass * velocity^2

Mass (m) = 1600 kg

Initial velocity (v1) = 15.0 m/s

Final velocity (v2) = 40.0 m/s

To calculate the minimum energy needed, we can find the difference in kinetic energy between the initial and final velocities:

ΔKE = KE2 - KE1

KE1 = (1/2) * m * v1^2

KE2 = (1/2) * m * v2^2

ΔKE = (1/2) * m * v2^2 - (1/2) * m * v1^2

Substituting the given values:

ΔKE = (1/2) * 1600 kg * (40.0 m/s)^2 - (1/2) * 1600 kg * (15.0 m/s)^2

ΔKE = 0.5 * 1600 kg * (1600 - 225) m^2/s^2

ΔKE = 0.5 * 1600 kg * 1375 m^2/s^2

ΔKE = 1,100,000 Joules

Therefore, the minimum energy needed to change the speed of the sport utility vehicle from 15.0 m/s to 40.0 m/s is 1,100,000 Joules.

Learn more about speed here

https://brainly.com/question/13943409

#SPJ11

Ever shine a green laser at anyone, especially not at an airplane, since the pilots can see the beam. Some fool did this in 2002, and the F. B. I. Arrested him on domestic terrorism charges.

Suppose that a green laser shines light with λ = 5. 32 × 10−7 m. This light travels outward from the laser through a circular aperture that is 2. 50 mm in diameter. How many meters in diameter is the beam, at a jet airliner altitude of exactly 38,000 feet? (Recall that 1 foot = 0. 3048 m. )

Answers

At a jet airliner altitude of 38,000 feet, the diameter of the laser beam would be approximately 37.34 meters.

Beam divergence refers to the spreading out of a laser beam as it travels away from its source. The angle of divergence (θ) can be approximated using the formula:

θ = λ / (π * D)

Where:

θ is the angle of divergence,

λ is the wavelength of the laser light,

D is the diameter of the circular aperture.

First, let's calculate the angle of divergence using the given values:

θ = 5.32 × 10⁻⁷ m / (π * 1.25 × 10⁻³ m)

θ ≈ 0.135 radians

Now, we can calculate the diameter of the laser beam at the jet airliner altitude by using the tangent of the angle of divergence and the altitude:

Beam diameter = 2 * altitude * tan(θ)

Beam diameter = 2 * (38,000 × 0.3048 m) * tan(0.135 radians)

Beam diameter ≈ 37.34 meters

Learn more about laser beam here:

https://brainly.com/question/31200718

#SPJ11

We have a uniform magnetic field and a neutral conductor. What is the magnetic force on a particle inside the conductor?
a. Zero
b. Non-zero
c. Cannot be determined with the information given
d. None of the above

Answers

The correct answer to this question is a. Zero. The reason for this is that a neutral conductor, by definition, has no net charge or current flowing through it.

Therefore, there are no charged particles within the conductor that could be affected by a magnetic field. Even if there were charged particles present, the magnetic force on a charged particle is proportional to the velocity of the particle, and in the absence of any external forces, the velocity of a charged particle inside a conductor would be zero.

So, in either case, the magnetic force on a particle inside a neutral conductor is zero. It is important to note, however, that if the conductor were not neutral and had a current flowing through it, then there would be a magnetic force on the charged particles within the conductor.

To know more about magnetic field visit-

brainly.com/question/19542022

#SPJ11

Which combination of frequencies would produce the lowest beat frequency? (1 point)
500 Hz and 501 Hz
10 Hz and 20 Hz
10 Hz and 15 Hz
500 Hz and 600 Hz

Answers

The combination of frequencies that produce the lowest beat frequency is 10 Hz and 15 Hz. The correct option is C.

To determine the beat frequency, we subtract one frequency from the other and take the absolute value. The beat frequency is the difference between the frequencies involved in the interference pattern created by two sound waves.

Let's analyze each option:

A. 500 Hz and 501 Hz: The beat frequency would be 501 Hz - 500 Hz = 1 Hz.

B. 10 Hz and 20 Hz: The beat frequency would be 20 Hz - 10 Hz = 10 Hz.

C. 10 Hz and 15 Hz: The beat frequency would be 15 Hz - 10 Hz = 5 Hz.

D. 500 Hz and 600 Hz: The beat frequency would be 600 Hz - 500 Hz = 100 Hz.

Therefore, option C (10 Hz and 15 Hz) produces the lowest beat frequency of 5 Hz compared to the other options.

To learn more about Frequency click:

brainly.com/question/1292129

#SPJ1  

Which two particles that make up atoms have about the same mass? Which two have the same magnitude of electric charge? What is an electric current, and what are its units? (Give two equivalent units.)

Answers

The two particles that make up atoms and have about the same mass are the neutron and the proton.

The neutron has a mass slightly greater than the proton, but their masses are considered to be approximately equal.The two particles that have the same magnitude of electric charge are the proton and the electron. The proton has a positive charge, while the electron has an equal but opposite negative charge. The magnitude of their charges is the same, but the sign is different.

An electric current is the flow of electric charge in a conductor. It is the movement of electrons through a closed circuit. The units of electric current are the ampere (A), coulomb per second (C/s), or the milliampere (mA), which is equal to 0.001 A.

Therefore, the units of electric current are:

Ampere (A)

Coulomb per second (C/s)

Milliampere (mA) (equal to 0.001 A)

Learn more about neutron here

https://brainly.com/question/12602839

#SPJ11

a football player kicks the ball with a speed of 50 m/s at an angle of 60 degrees. the ball is meant to clear a goal located 40 meters vertically from the ground. if the ball barely makes it across the goal. find the distance from point the ball was kicked to the horizontal position where the goal is located. use g

Answers

The distance from the point the ball was kicked to the horizontal position where the goal is located is 100 meters.

To solve this problem, we need to use the kinematic equations of motion. We know that the initial velocity of the ball is 50 m/s at an angle of 60 degrees. We can break this down into its horizontal and vertical components. The horizontal component is given by Vx = V cos θ, where V is the initial velocity and θ is the angle of projection. So, Vx = 50 cos 60 = 25 m/s. The vertical component is given by Vy = V sin θ, where V is the initial velocity and θ is the angle of projection. So, Vy = 50 sin 60 = 43.3 m/s.


Now, we need to find the time taken by the ball to reach the top of its trajectory. We know that the vertical distance traveled by the ball is 40 meters. We can use the equation, s = ut + (1/2)gt^2, where s is the vertical distance, u is the initial velocity, g is the acceleration due to gravity (9.8 m/s^2), and t is the time taken. Putting the values, we get 40 = 43.3t - (1/2)(9.8)t^2. Solving this equation, we get t = 4 seconds. Now, we can find the horizontal distance traveled by the ball using the equation, s = ut, where s is the horizontal distance, u is the initial velocity in the horizontal direction, and t is the time taken. Putting the values, we get s = 25 x 4 = 100 meters.

To know more about distance  visit:-

https://brainly.com/question/13034462

#SPJ11

a solid copper cube has an edge length of 85.5 cm. how much pressure must be applied to reduce this to 85 cm? copper's bulk modulus is

Answers

To calculate the pressure required to reduce the edge length of a solid copper cube from 85.5 cm to 85 cm, we can use the concept of bulk modulus.

K = -V(ΔP/ΔV)

ΔV = (ΔL)^3

The bulk modulus (K) relates the change in pressure (ΔP) to the fractional change in volume (ΔV/V) of a material:

K = -V(ΔP/ΔV)

Here, we are given the change in length (ΔL) as 85.5 cm - 85 cm = 0.5 cm. The original length (L) is 85.5 cm. Since the copper cube is a cube, the change in volume (ΔV) is equal to the change in length cubed:

ΔV = (ΔL)^3

Substituting these values into the equation, we get:

K = -V(ΔP/ΔV)

K = -V(ΔP/(ΔL)^3)

K = -(L^3)(ΔP/(ΔL)^3)

K = -(85.5 cm)^3(ΔP/(0.5 cm)^3)

K = -85.5^3(ΔP/0.125)

Now, since we know the bulk modulus of copper, we can substitute its value into the equation:

140 GPa = -85.5^3(ΔP/0.125)

Solving for ΔP, we can rearrange the equation:

ΔP = (140 GPa * 0.125)/(-85.5^3)

Evaluating this expression, we find:

ΔP ≈ -1.609 GPa

Therefore, approximately 1.609 GPa of pressure must be applied to reduce the edge length of the copper cube from 85.5 cm to 85 cm.

Learn more about modulus here

https://brainly.com/question/12910262

#SPJ11

help me please ?
physics G10 .

Answers

In the visible spectrum, blue has the shortest wavelength, so it is the color that will be closest to the zero-order fringe.

How to explain the information

The first-order fringes (f₁) are located on the same side of the zero-order fringe (fo) as the slits. This is because the first-order fringes are caused by light waves that have been diffracted by the slits. The shorter the wavelength of light, the more it is diffracted, and the closer the first-order fringes will be to the zero-order fringe.

Therefore, the color that corresponds to the shortest wavelength is the one that is closest to the zero-order fringe.

In the visible spectrum, blue has the shortest wavelength, so it is the color that will be closest to the zero-order fringe.

Learn more about wavelength on

https://brainly.com/question/10728818

#SPJ1

an exoplanet with a mass 10 times that of jupiter would have a size (radius) group of answer choices about the same as jupiter 10 times larger than jupiter 10 times smaller than jupiter that is just about any value

Answers

An exoplanet with a mass 10 times that of Jupiter would have a size (radius) roughly 1.5 times larger than Jupiter.

The size of a planet depends on its mass and composition. For planets with a mass greater than Jupiter, their size is mainly determined by how much they compress under their own gravity. An exoplanet with a mass 10 times that of Jupiter would have a higher gravity, which would cause it to compress more than Jupiter, resulting in a larger size.

However, the exact size of such a planet would depend on its composition. If it had a similar composition to Jupiter, then its radius would be roughly 1.5 times larger than Jupiter. But if it had a different composition, such as a higher percentage of heavier elements, then its radius could be slightly larger or smaller than that.

Overall, the size of an exoplanet with a mass 10 times that of Jupiter would not be significantly larger or smaller than Jupiter, but rather in between the two sizes.

Learn more about exoplanet here:

https://brainly.com/question/30792669

#SPJ11

A uniform rod of mass 190 g and length 100 cm is free to rotate in a horizontal plane around foed verticalls through its center, perpendicular to its length. Two small beads, each of mass 22. are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the roots conter, 18 cm from the as of rotation. With the beads in this position, the rod s rotating with an equar vety of 12.0 rad/s. When the catches are released, the beads slide outward along the rod. (a) What the roos angutar velody in rad/s) when the beads reach the ends of the road? (Indicate the direction with the sign of your answer.) 11.12 X Fad/s (b) What is the roof's angular velocity in red/) if the beads y of the rod? (Indicate the direction with the wign of your answer.) rad/ Two masses me and my are attached to a rod of negligible mass that is capable of rotating about an axis perpendicular to the red and passing through the end, A, as shown in the diagram below. The length of the road ist - 180cm, m,- 3.000 m2 - 4.50 .* - 2.70 cm, and xy - 1.35 cm. Ir the rod rotates counterclockwise in the x-z plane with an angular speed of 5.00 rad/s, what is the angular momentum of the system We use the standard rectangular coordinate system with #xaxis to the right ty axis vertically up, and +2 axes coming out toward you ther your answer using unt vector notation. Lotal kg.

Answers

The rod's angular velocity when the beads reach the ends of the rod and when the beads fly off the rod are 11.12 rad/s and 18.46 rad/s respectively.

(a) The initial angular velocity of the rod is given as 12.0 rad/s. When the catches are released and the beads slide outward, the law of conservation of angular momentum states that the total angular momentum of the system remains constant.

The moment of inertia of the rod with the beads is given by:

I = (1/3) * m * L^2

where m is the mass of the rod and L is its length.

The moment of inertia of each bead is given by:

I_bead = m_bead * r^2

where m_bead is the mass of each bead and r is the distance of each bead from the axis of rotation.

Initially, the beads are located 18 cm from the axis of rotation. As they slide outward, their distance from the axis increases.

The total initial angular momentum is given by:

L_initial = I * ω_initial

where ω_initial is the initial angular velocity.

The final angular momentum is given by:

L_final = (I + 2 * I_bead) * ω_final

where ω_final is the final angular velocity.

Since angular momentum is conserved, L_initial = L_final.

Substituting the given values:

I = (1/3) * 0.190 kg * (1.00 m)^2

m_bead = 0.022 kg

r_initial = 0.18 m

L_initial = L_final

I * ω_initial = (I + 2 * I_bead) * ω_final

Solving for ω_final:

ω_final = (I * ω_initial) / (I + 2 * I_bead)

Substituting the values:

ω_final = (0.333 J * 12.0 rad/s) / (0.333 J + 2 * (0.022 kg * (0.18 m)^2))

Simplifying the expression:

ω_final ≈ 11.12 rad/s

Therefore, the rod's angular velocity when the beads reach the ends of the rod is approximately 11.12 rad/s in the same direction as the initial rotation.

(b) If the beads fly off the rod, it means they have reached the ends of the rod and are no longer attached. In this case, the moment of inertia of the system changes.

The final moment of inertia is given by:

I_final = (1/3) * m * L^2 + 2 * I_bead

Using the given values:

I_final = (1/3) * 0.190 kg * (1.00 m)^2 + 2 * (0.022 kg * (0.18 m)^2)

I_final ≈ 0.215 J

To find the final angular velocity, we use the same formula as before:

ω_final = (I * ω_initial) / (I_final)

ω_final = (0.333 J * 12.0 rad/s) / 0.215 J

ω_final ≈ 18.46 rad/s

Therefore, the rod's angular velocity when the beads fly off the rod is approximately 18.46 rad/s in the same direction as the initial rotation.

(a) The rod's angular velocity when the beads reach the ends of the rod is approximately 11.12 rad/s.

(b) The rod's angular velocity when the beads fly off the rod is approximately 18.46 rad/s.

To know more about angular, visit:

https://brainly.com/question/13014974

#SPJ11

Other Questions
The derivative of a function is given. Use it to find the following. f (x) f (2) = (x 3) (x + 1) (x + 4) a) Interval(s) where f (c) is increasing, b) Interval(s) where f (x) is decreasing c) Local howto solve 9 and 10?9. [-/2 Points] DETAILS LARAPCALC8 2.4.004. Consider the following function. f(x) = (x. + 8) (9x + 6), (1, 48) (a) Find the value of the derivative of the function at the given po f(1) = (b) Choose FILL THE BLANK. research shows that users feel capable of driving safely as soon as _______ after using, even though their driving was still impaired when tested. drying instruments to prevent rusting is essential when processing in Sarah was setting up a room with tables for an event. The room had 11 metal tables and 1 wood table. What is the probability that the first person to eneter the room will be randomly seated at a metal table? Give your answer as a reduced fraction. 6 What does Sexton mean when she compares handling words and eggs in lines 24-26?F She means that words cannot be taken back once they are written.G She means that composing a poem is as difficult as cooking eggs the right way.H She means that even strong words can send a gentle message to the reader.J She means that writing takes a lot of skill and practice. In an effort to expand the usefulness of its activity-based costing system, Peter Catalano's Verde Vineyards decides to adopt activity- based management (ABM) techniques. One of these ABM techniques is classifying its activities as either value-added or non-value- added. 1. Spraying: The vines are sprayed with chemicals for protection against insects and fungi. 2. Harvesting: The grapes are hand-picked, placed in carts, and transported to the crushers. 3. Stemming and crushing: Cartfuls of bunches of grapes of each variety are separately loaded into machines, which remove stems and gently crush the grapes. 4. Pressing and filtering: The crushed grapes are transferred to presses that mechanically remove the juices and filter out bulk and impurities. 5. Fermentation: The grape juice, by variety, is fermented in either stainless-steel tanks or oak barrels. 6. Aging: The wines are aged in either stainless-steel tanks or oak barrels for one to three years, depending on the variety. Bottling and corking: Bottles are machine-filled and corked. 7. 8. Labelling and boxing: Each bottle is labelled, as is each nine-bottle case, with the name of the vintner, vintage, and variety. Storing: Packaged and boxed bottles are stored awaiting shipment. 9. 10. Shipping: The wine is shipped to distributors and private retailers. 11. Heating and air-conditioning of plant and offices. Maintenance of buildings and equipment: Repairs, replacements, and general maintenance are performed in the off- 12. season. For each of Verde's activity cost pools, classify each of the activities as either value-added or non-value-added. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Spraying Harvesting Stemming and crushing Pressing and filtering Fermentation Aging Bottling and corking Labelling and boxing Storing Shipping Heating and air-conditioning of plant and offices Maintenance of buildings and equipment 4. Let (an) = be a sequence of real numbers and let O SRS be the convergence radius of the power series anxn Prove or disprove each of the following statements: n=0 (a) If an = 4.7.10.-(3n+1) for every n e N then R = 3. (b) If an 2" is convergent, then (-1)"+1 an converges absolutely. NO no (c) Let 0 < S o be the convergence radius of the power series an (x - 5)". Then = R. n=0 (d) If R < 1, then lim an # 0. 100 (e) Let a, b > 0. Then the series 1 - 9 + $-+... is convergent if and only if a = b. (f) If an is convergent, then (-1)"+1 al is convergent. n=1 n=1 the following is a list of account titles and amounts (in millions) reported at december 30, 2018, by agate playthings a leading manufacturer of games, toys, and interactive entertainment software for children and families: accounts receivable $ 1,115 equipment $ 494 accumulated amortization 749 goodwill 599 accumulated depreciation 504 inventory 354 allowance for doubtful accounts 34 land 9 buildings 244 licensing rights 1,839 cash and cash equivalents 684 prepaid rent 359 required: 1. prepare the asset section of a classified balance sheet for agate playthings. 2-a. using agates 2018 net sales revenue of $4,470 (million) and its average net fixed assets of $266 (million), calculate the fixed asset turnover ratio for 2018. 2-b. has the company generated more or less revenue from each dollar of fixed assets than in 2017, when the ratio was 18.27? John wants to add an attribute to identify that something has to be entered to a form field. Which one?a. submitb. requiredc. methodd. default value T/F A pop server provides mail management functions on the server. Which of the following is not a step before or during testing as an independent security professional?a. consult an attorneyb. establish a contractual agreement with the companyc. use resources such as the Internet and booksd. run thorough tests that use excessive bandwidth What is the concentration of Ca2+ that can be found in a saturated solution of CaF2 (s) at 25 oC ? Note: At 25 oC, Ksp of CaF2 (s) = 6.5 10-6 The equation p in spherical coordinates represents a sphere. Select one: O True O False r(t)= ln (1/(t+1)^1/2) i+ sin (2t^2+t) j -1/(t+1)^6 k, Find Tangent, Normal, and Binormal at t=1 a method of paring down the a set of candidate predictor variables in a linear model one at a time until all variables left in the model are useful in explaining variability in the response, y (PLEASE HELP 30 POINTS ROMEO AND JULIET) write important vocabulary words from romeo and juliet __Fe+__Pb(No3)3+__PbIf 30.0 g of iron react with 258 g lead (Il) nitrate and 67.8 grams of lead form, what is the percent yield? Solve the linear system if differential equations given below using the techniques of diagonalization and decoupling outlined in the section 7.3 class notes. x = -2x - 2x3 x = -2x2x3 x3 = -2x - 2x Tom and Kelly competed in a race. When Kelly completed the race in 15 minutes, Tom had only finished running 2/3 of the race. Tom's average speed for the race was 10 m/min less than that of Kelly's. (a) What was the distance of the race? (b) Find Tom's average speed in meters per minute.