Answer:
Updated question
The big ben clock tower in London has clocks on all four sides. If each clock has a minute hand that is 11.5 feet in length, how far does the tip of each hand travel in 52 minutes?
The distance traveled by the tip of the minute hand of the clock would be 62.59 ft
Explanation:
Let us assume the shape of the clock is circular.
the minute hand is equal to the radius = 11.5 ft
Diameter = radius x 2
Diameter = 11.5 x 2 = 23 ft
The distance traveled by the tip of the minute hand can be calculated thus;
the fraction of the circumference traveled by the minute hand would be;
52/60 = 0.8667
Circumference of the clock would be;
C = pi x d
where C is the circumference
pi is a constant
d is the diameter
C = 3.14 x 23
C = 72.22 ft
Therefore the fraction of the circumference covered by the minute hand would be;
72.22 ft x 0.8667 = 62.59 ft
Therefore the distance traveled by the tip of the minute hand of the clock would be 62.59 ft
Here are the commonly used Baud rate: 2400,4800,9600,19200,38400, 115200, 460800 There is an inertial measurement unit (IMU) measurement sensor that needs to update 98 bytes data (with extra 2 label bytes) every 10 ms (100Hz), what is the minimum requirement of the baud rate? (1 byte = 8 bits) Which of the above listed Baud rate you can choose to use? (please list all of them) .
Answer:
115200 and 460800
Explanation:
which of the above listed Baud rate can you choose from
Given Baud rate : 2400,4800,9600,19200,38400, 115200, 460800
The Total bytes = 98 data bytes + 2 extra label bytes for every 10 ms
= 100 bytes for every 10 ms
hence the data rate per second
= [tex]\frac{100 * 8}{10*10^{-3} }[/tex] = 80000
minimum required Baud rate = 80000
Therefore The Baud rate that can be chosen from are : 115200 and 460800
A system samples a sinusoid of frequency 230 Hz at a rate of 175 Hz and writes the sampled signal to its output without further modification. Determine the frequency that the sampling system will generate in its output.
a. 120
b. 55
c. 175
d. 230
A smooth ceramic sphere (SG 5 2.6) is immersed in a fl ow of water at 208C and 25 cm/s. What is the sphere diameter if it is encountering (a) creeping motion, Red 5 1 or (b) transition to turbulence, Red 5 250,000
Answer:
a. 4[tex]\mu m[/tex]
b. 1 m
Explanation:
According to the question, the data is as follows
The Density of water at 20 degrees celcius is 1000 kg/m^3
Viscosity is 0.001kg/m/.s
Velocity V = 25 cm/s
V = 0.25 m/s
Now
a. The creeping motion is
As we know that
Reynold Number = (Density of water × V × d) ÷ (Viscosity)
1 = (1,000 × 0.25 × d) ÷ 0.0001
d = (1 × 0.001) ÷ (1,000 × 0.25)
= 4E - 06^m
= 4[tex]\mu m[/tex]
b. Now the sphere diameter is
Reynold Number = (Density of water × V × d) ÷ (Viscosity)
250,000 = (1,000 × 0.25 × d) ÷ 0.0001
d = (250,000 × 0.001) ÷ (1,000 × 0.25)
= 1 m
Tubular centrifuge is used for recovering cells 60% of the cells or recover data flow rate of 12 l/min with a rotational speed of 4000 RPM what is the RPM to increase the recovery rate of the cells to 95% at the same flow rate
Answer:
The RPM to increase the recovery rate of the cells to 95% at the same flow rate is 6,333.3 RPM.
Explanation:
If the tubular centrifuge rotates at about 4,000 revolutions per minute to recover 60% of the cells, in case of wanting to recover 95% of the cells, the following calculation must be carried out to determine the required number of revolutions per minute:
60 = 4,000
95 = X
((95 x 4,000) / 60)) = X
(380,000 / 60) = X
6,333.3 = X
Therefore, as the calculation emerges, the tubular centrifuge will need to rotate at about 6,333.3 revolutions per minute to recover 95% of the cells in the same time.
Air is compressed isothermally from 13 psia and 55°F to 80 psia in a reversible steady-flow device. Calculate the work required, in Btu/lbm, for this compression. The gas constant of air is R.
Answer:64.10 Btu/lbm
Explanation:
Work done in an isothermally compressed steady flow device is expressed as
Work done = P₁V₁ In { P₁/ P₂}
Work done=RT In { P₁/ P₂}
where P₁=13 psia
P₂= 80 psia
Temperature =°F Temperature is convert to °R
T(°R) = T(°F) + 459.67
T(°R) = 55°F+ 459.67
=514.67T(°R)
According to the properties of molar gas, gas constant and critical properties table, R which s the gas constant of air is given as 0.06855 Btu/lbm
Work = RT In { P₁/ P₂}
0.06855 x 514.67 In { 13/ 80}
=0.06855 x 514.67 In {0.1625}
= 0.06855 x 514.67 x -1.817
=- 64.10Btu/lbm
The required work therefore for this isothermal compression is 64.10 Btu/lbm
Which kind of fracture (ductile or brittle) is associated with each of the two crack propagation mechanisms?
dutile is the correct answer
Compute the discharge observed at a v-notch weir. The weir has an angle of 90-degrees. The height above the weir is 3 inches.
Answer: the discharge observed at a v-notch weir is 66.7 in³/s
Explanation:
Given that;
Notch angle ∅ = 90°
height above the weir is 3 inches { head + head correction factor) h + k = 3 in
Discharge Q = ?
To determine the discharge observed, we us the following expression
Q = 4.28Ctan(∅/2) ( h + k )^5/2
where Q is discharge, C is discharge coefficient, ∅ is notch angle, h is head and k is head correction factor
now we substitute
Q = 4.28 × 1 × tan(90/2) ( 3 )^5/2
Q = 4.28 × 1 × 1 × 15.5884
Q = 66.7 in³/s
Therefore the discharge observed at a v-notch weir is 66.7 in³/s
If you make a mistake in polarity when measuring the value of DC voltage in a circuit with a digital VOM, what will happen? A. The meter will be damaged. B. The meter will read positive voltage only. C. The meter will display a negative sign. D. The meter will display OL which states an overload condition.
Answer:
C. The meter will display a negative sign.
Explanation:
If you use an analog voltmeter and you measure voltage with reverse polarity you will damage it. But in this case we are using a digital multimeter. This kind of multimeter is designed to be able to deal with positive and negative voltages
Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect
deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,
(4) restart thread and release all resources if thread needs to wait, (5) resource ordering, and (6) detect deadlock and roll back thread’s actions.
a. One criterion to use in evaluating different approaches to deadlock is which
approach permits the greatest concurrency. In other words, which approach allows
the most threads to make progress without waiting when there is no deadlock?
Give a rank order from 1 to 6 for each of the ways of handling deadlock just listed,
where 1 allows the greatest degree of concurrency. Comment on your ordering.
b. Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming that deadlock is a very rare event. Comment on your ordering. Does
your ordering change if deadlocks occur frequently?
who can answer part B for me?
Answer:
b
Explanation:
What is difference between a backdoor, a bot, a keylogger, and psyware,a nd a rootkit? Can they all present in the same malware?
Answer:
Yes, they can all be present in the same malware because each of them perform slightly differing functions.
Explanation:
Backdoor is a software which when placed into your computer will permit hackers to easily gain reentry into your computer. This can happen even after you have already patched the flaw that they have used to hack your system before.
A bot is a program that does the same task in a continuous manner akin to when you use a blender by pressing the button to blend what you have put into it.
A keylogger is a part of a hidden software that monitors and records everything you type on your computer keyboard after which it writes it onto a file, with the hopes of capturing relevant information such as your bank account number and even passwords and other sensitive means of identification.
A Spyware is somehow similar to a keylogger just that it steals information from your computer and sends it to someone else.
A root kit is a bad software that is capable of modifying the operating system or other privileged access devices in order to gain continuous access into your system for the purpose of gathering of information and/or reducing the system’s functionality.
Yes, they can all be present in the same malware because each of them perform slightly differing functions.
Consider the string length equal to 7. This string is distorted by a function f (x) = 2 sin(2x) - 10sin(10x). What is the wave formed in this string? a. In=12cos (nit ) sin(max) b. 2cos(2t)sin (2x) - 10cos(10t ) sin(10x) c. n 2 sin 2x e' – 10sin 10x e
Answer:
hello your question has a missing part below is the missing part
Consider the string length equal to [tex]\pi[/tex]
answer : 2cos(2t) sin(2x) - 10cos(10t)sin(10x)
Explanation:
Given string length = [tex]\pi[/tex]
distorted function f(x) = 2sin(2x) - 10sin(10x)
Determine the wave formed in the string
attached below is a detailed solution of the problem
In beams, why is the strain energy from bending moments much bigger than the strain energy from transverse shear forces? Choose one or more of the following options.
a) The stresses due to bending moments is much more than the stresses from transverse shear.
b) The strains due to bending moments is much more than the strains from transverse shear.
c) The deformations due to bending moments is much more than the deformations from transverse shear.
Answer:
a) The stresses due to bending moments is much more than the stresses from transverse shear.
c) The deformations due to bending moments is much more than the deformations from transverse shear.
Explanation:
Strain in an object suspended is a function of the stress which the suspended body passed through. The stress which is the function of the force experienced by the body over a given area helps is straining the moment. This lead to the strain energy from bending moment being greater than the strain energy from a transverse shear force.
The pascal is actually a very small unit of pressure. To show this, convert 1 Pa = 1 N/m² to lb/ft². Atmosphere pressure at sea level is 14.7 lb/in². How many pascals is this?
Answer:
pascals is this = 101352.972 Pa
Explanation:
given data
Atmosphere pressure at sea level = 14.7 lb/in²
we convert 1 Pa = 1 N/m² to lb/ft²
so we convert here 14.7 lb/in² to pascals
we know that 1 lb/ft² = 47.990172 N/m²
so
1 lb/ft² × ft²/(12in)² = 47.990172 × 144 N/m²
it will be simplyfy
1 lb/ft² = 6894.76 N/m²
so
14.7 lb/in² = 14.7 × 6894.76 N/m²
14.7 lb/in² = 101352.972 Pa
An unknown impedance Z is connected across a 380 V, 60 Hz source. This causes a current of 5A to flow and 1500 W is consumed. Determine the following: a. Real Power (kW) b. Reactive Power (kvar) c. Apparent Power (kVA) d. Power Factor e. The impedance Z in polar and rectangular form
Answer:
a) Real Power (kW) = 1.5 kW
b) Reactive Power (kvar) is 1.1663 KVAR
c) Apparent Power (kVA) is 1.9 KVA
d) the Power Factor cos∅ is 0.7894
e) the impedance Z in polar and rectangular form is 76 ∠ 37.87° Ω
Explanation:
Given that;
V = 380v
i = 5A
P = 1500 W
determine;
a) Real Power (kW)
P = 1500W = 1.5 kW
therefore Real Power (kW) = 1.5 kW
b) Reactive Power (kvar)
p = V×i×cos∅
cos∅ = p / Vi
cos∅ = 1500 / ( 380 × 5 ) = 0.7894
∅ = cos⁻¹ (0.7894)
∅ = 37.87°
Q = VIsin∅
Q = 380 × 5 × sin( 37.87° )
Q = 1.1663 KVAR
Therefore Reactive Power (kvar) is 1.1663 KVAR
c) Apparent Power (kVA)
S = P + jQ
= ( 1500 + J 1166.3 ) VA
S = 1900 ∠ 37.87° VA
S = 1.9 KVA
Therefore Apparent Power (kVA) is 1.9 KVA
d) Power Factor
p = V×i×cos∅
cos∅ = p / Vi
cos∅ = 1500 / ( 380 × 5 ) = 0.7894
Therefore the Power Factor cos∅ is 0.7894
e) The impedance Z in polar and rectangular form
Z = 380 / ( S∠-37.87) = V/I
Z = ( 60 + j 46.647) Ω
Z = 76 ∠ 37.87° Ω
Therefore the impedance Z in polar and rectangular form is 76 ∠ 37.87° Ω
Un mol de gas ideal realiza un trabajo de 3000 J sobre su entorno, cuando se expande de manera isotermica a una temperatura de 58°C, cuando su volumen inicial es de 25 L. Determinar el volumen final
Answer:
74,4 litros
Explanation:
Dado que
W = nRT ln (Vf / Vi)
W = 3000J
R = 8,314 JK-1mol-1
T = 58 + 273 = 331 K
Vf = desconocido
Vi = 25 L
W / nRT = ln (Vf / Vi)
W / nRT = 2.303 log (Vf / Vi)
W / nRT * 1 / 2.303 = log (Vf / Vi)
Vf / Vi = Antilog (W / nRT * 1 / 2.303)
Vf = Antilog (W / nRT * 1 / 2.303) * Vi
Vf = Antilog (3000/1 * 8,314 * 331 * 1 / 2,303) * 25
Vf = 74,4 litros
Identify how the average friction and heat transfer coefficients are determined in flow over a flat plate.
A) They are determined by differentiating the local friction and heat transfer coefficients at the mid-length of the plate, and then multiplying them by the length of the plate.
B) They are determined by by integrating the local Reynolds number and Nusselt numbers over the entire plate.
C) They are determined by integrating the local friction and heat transfer coefficients over the entire plate, and then dividing them by the length of the plate.
D) They are determined by by differentiating the local Reynolds number and Nusselt numbers at the mid-length of the plate.
Answer:
C.
Explanation:
Let's have
Q = heat transfer surface
∆T = average temperature
F = area of the heat surface
Then the heat transfer coefficient = Q/∆T*F
In a flow over flat plate, the average friction and the heat transfer coefficient are determined by the integration of local friction and also great transfer coefficients over the plate entirely and then dividing by the plates length.
Therefore answer option C is the answer to this question.
I need help please thank for the help on the last one <3
What overall material composition would be required to give a material made up of 50wt% mullite and 50wt% alumina at 1400°C?
Answer: overall composition ⇒ 87 wt% { AL₂O₃] + 13% wt { SiO₂}
Explanation:
Given that;
from the phase diagram SiO₂ - Al₂O₃
alumina at 1400°C
mullite + alumina ranges from 74 - 100% wt
so for 50% mullite and 50wt% alumina
we have;
50/100 = 100 - x / 100 - 74
0.5 = 100 - x / 26
0.5 × 26 = 100 - x
13 = 100 - x
x = 100 - 13
x = 87 wt% { AL₂O₃]
[ 100% - 87% = 13%] 13% wt SiO₂
So overall composition ⇒ 87 wt% { AL₂O₃] + 13% wt { SiO₂}
What is computer programming
Answer:
Computer programming is where you learn and see how computers work. People do this for a living as a job, if you get really good at it you will soon be able to program/ create a computer.
Explanation:
Hope dis helps! :)
A rear wheel drive car has an engine running at 3296 revolutions/minute. It is known that at this engine speed the engine produces 80 hp. The car has an overall gear reduction ratio of 10, a wheel radius of 16 inches, and a 95% drivetrain mechanical efficiency. The weight of the car is 2600 lb, the wheelbase is 95 inches, and the center of gravity is 22 inches above the roadway surface. What is the closest distance the center of gravity can be behind the front axle to have the vehicle achieve its maximum acceleration from rest on good, wet pavement?
Answer:
the closest distance the center of gravity can be behind the front axle to have the vehicle achieve its maximum acceleration from rest on good, wet pavement is 47.8 in
Explanation:
Given that;
Weight of car W = 2600 lb
power = 80 hp = 44000 lb ft/s
Engine rpm = 3296
gear reduction ratio e = 10
drivetrain efficiency n = 95% = 0.95
wheel radius R = 16 in = 1.3333 ft
Length of wheel base L = 95 in =
coefficient of road adhesion u = 0.60
height of center of gravity above pavement h = 22 in
we know that;
Coefficient of rolling resistance frl = 0.01 for good wet pavement
distance of center of gravity behind the front axle lf = ?
Maximum tractive effort (Fmax) = (uW / L) (lf - frl h) / (1 - uh / L)
First we calculate our Fmax to help us find lf
Power = Torque × 2π × Engine rpm / 60 )
44000 = Torque ( 2π×3296 / 60)
Torque = 127.5 lb ft
so
Fmax = Torque × e × n / R
so we substitute in our values
Fmax = 127.5 × 10 × 0.95 / 1.333
Fmax = 908.66 lb
Now we input all our values into the initial formula
(Fmax) = (uW / L) (lf - frl h) / (1 - uh / L)
908.66 = [(0.6×2600/95) (lf - 0.01×22)] / [1 - 0.6×22) / 95]
908.66 = (16.42( lf - 0.22)) / 0.86
781.4476 = (16.42( lf - 0.22))
47.59 = lf - 0.22
lf = 47.59 + 0.22
lf = 47.8 in
Therefore the closest distance the center of gravity can be behind the front axle to have the vehicle achieve its maximum acceleration from rest on good, wet pavement is 47.8 in
A roadway is to be designed on a level terrain. The roadway id 500 ft. Five cross-sections have been selected at 0 ft, 125 ft, 250 ft, 375 ft, and 500 ft. the cross sections have areas of 130 ft^2, 140 ft^2, 60 ft^2, 110 ft^2, and 120 ft^2. What is the volume needed along this road assuming a 6% shrinkage?
Answer:
51112.5 ft^3
Explanation:
Determine the volume needed along the road when we assume a 6% shrinkage
shrinkage factor = 1 - shrinkage = 1 - 0.06 = 0.94
first we have to calculate the volume between the cross sectional areas (i.e. A1 ---- A5 ) using average end area method
Volume between A1 - A2
= (125 ft - 0 ft) * [(130 ft^2 + 140 ft^2) / 2]
= 125 ft * 135 ft^2
= 16875 ft^3
Volume between A2 - A3
= (250 ft - 125 ft) * [(140 ft^2 + 60 ft^2) / 2]
= 125 ft * (200 ft^2 / 2)
= 12500 ft^3
Volume between A3 - A4
= (375 ft - 250 ft) * [(60 ft^2 + 110 ft^2) / 2]
= 125 ft * (170 ft^2 / 2)
= 10625 ft^3
Volume between A4 - A5
(500 ft - 375 ft) * [(110 ft^2 + 120 ft^2) / 2]
= 125 ft * 115 ft^2
= 14375 ft3
Hence the total volume along the 500 ft road
= ∑ volumes between cross sectional areas
= 16875 ft^3 + 12500 ft^3 + 10625 ft^3 + 14375 ft^3 = 54375 ft^3
Finally the volume needed along this road is calculated as
Total volume * shrinkage factor
= 54375 * 0.94 = 51112.5 ft^3
In an axial flow compressor air enters the compressor at stagnation conditions of 1 bar and 290 K. Air enters with an absolute velocity of 145 m/s axially into the first stage of the compressor and axial velocity remains constant through the stage. The rotational speed is 5500 rpm and stagnation temperature rise is 22 K. The radius of rotor-blade has a hub to tip ratio of 0.5. The stage work done factor is 0.92, and the isentropic efficiency of the stage is 0.90. Assume for air Cp=1005 kJ/(kg·K) and γ= 1.4
Determine the followings. List your assumptions.
i. The tip radius and corresponding rotor angles at the tip, if the inlet Mach number for the relative velocity at the tip is limited to 0.96.
ii. The mass flow at compressor inlet.
iii. The stagnation pressure ratio of the stage and power required by the first stage.
iv. The rotor angles at the root section.
Answer:
i) r_t = 0.5101 m
ii) m' = 106.73 kg/s
iii) R_s = 1.26
P = 2359.8 kW
iv) β2 = 55.63°
Explanation:
We are given;
Stagnation pressure; T_01 = 290 K
Inlet velocity; C1 = 145 m/s
Cp for air = 1005 kJ/(kg·K)
Mach number; M = 0.96
Ratio of specific heats; γ = 1.4
Stagnation pressure; P_01 = 1 bar
rotational speed; N = 5500 rpm
Work done factor; τ = 0.92
Isentropic effjciency; η = 0.9
Stagnation temperature rise; ΔT_s = 22 K
i) Formula for Stagnation temperature is given as;
T_01 = T1 + C1/(2Cp)
Thus,making T1 the subject, we havw;
T1 = T_01 - C1/(2Cp)
Plugging in the relevant values, we have;
T1 = 290 - (145/(2 × 1005))
T1 = 289.93 K
Formula for the mach number relative to the tip is given by;
M = V1/√(γRT1)
Where V1 is relative velocity at the tip and R is a gas constant with a value of 287 J/Kg.K
Thus;
V1 = M√(γRT1)
V1 = 0.96√(1.4 × 287 × 289.93)
V1 = 0.96 × 341.312
V1 = 327.66 m/s
Now, tip speed is gotten from the velocity triangle in the image attached by the formula;
U_t = √(V1² - C1²)
U_t = √(327.66² - 145²)
U_t = √86336.0756
U_t = 293.83 m/s
Now relationship between tip speed and tip radius is given by;
U_t = (2πN/60)r_t
Where r_t is tip radius.
Thus;
r_t = (60 × U_t)/(2πN)
r_t = (60 × 293.83)/(2π × 5500)
r_t = 0.5101 m
ii) Now mean radius from derivations is; r_m = 1.5h
While relationship between mean radius and tip radius is;
r_m = r_t - h/2
Thus;
1.5h = 0.5101 - 0.5h
1.5h + 0.5h = 0.5101
2h = 0.5101
h = 0.5101/2
h = 0.2551
So, r_m = 1.5 × 0.2551
r_m = 0.3827 m
Formula for the area is;
A = 2πr_m × h
A = 2π × 0.3827 × 0.2551
A = 0.6134 m²
Isentropic relationship between pressure and temperature gives;
P1 = P_01(T1/T_01)^(γ/(γ - 1))
P1 = 1(289.93/290)^(1.4/(1.4 - 1))
P1 = 0.9992 bar = 0.9992 × 10^(5) N/m²
Formula for density is;
ρ1 = P1/(RT1)
ρ1 = 0.9992 × 10^(5)/(287 × 289.93)
ρ1 = 1.2 kg/m³
Mass flow rate at compressor inlet is;
m' = ρ1 × A × C1
m' = 1.2 × 0.6134 × 145
m' = 106.73 kg/s
iii) stagnation pressure ratio is given as;
R_s = (1 + ηΔT_s/T_01)^(γ/(γ - 1))
R_s = (1 + (0.9 × 22/290))^(1.4/(1.4 - 1))
R_s = 1.26
Work is;
W = C_p × ΔT_s
W = 1005 × 22
W = 22110 J/Kg
Power is;
P = W × m'
P = 22110 × 106.73
P = 2359800.3 W
P = 2359.8 kW
iv) We want to find the rotor angle.
now;
Tan β1 = U_t/C1
tan β1 = 293.83/145
tan β1 = 2.0264
β1 = tan^(-1) 2.0264
β1 = 63.73°
Formula for Stagnation pressure rise is given by;
ΔT_s = (τ•U_t•C1/C_p) × tan(β1 - β2)
Plugging in the relevant values;
22 = (0.92 × 293.83 × 145/1005) × (tan 63.73 - tan β2)
(tan 63.73 - tan β2) = 0.5641
2.0264 - 0.5641 = tan β2
tan β2 = 1.4623
β2 = tan^(-1) 1.4623
β2 = 55.63°
What is the Bernoulli formula?
Answer:
P1+1/2pv2/1+pgh1=P2+1/2pv2/2+pgh2
A cylindrical bar of metal having a diameter of 19.2 mm and a length of 207 mm is deformed elastically in tension with a force of 52900 N. Given that the elastic modulus and Poisson's ratio of the metal are 61.4 GPa and 0.34, respectively, determine the following:
a. The amount by which this specimen will elongate in the direction of the applied stress.
b. The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number.
Answer:
1)ΔL = 0.616 mm
2)Δd = 0.00194 mm
Explanation:
We are given;
Force; F = 52900 N
Initial length; L_o = 207 mm = 0.207 m
Diameter; d_o = 19.2 mm = 0.0192 m
Elastic modulus; E = 61.4 GPa = 61.4 × 10^(9) N/m²
Now, from Hooke's law;
E = σ/ε
Where; σ is stress = force/area = F/A
A = πd²/4 = π × 0.0192²/4
A = 0.00009216π
σ = 52900/0.00009216π
ε = ΔL/L_o
ε = ΔL/0.207
Thus,from E = σ/ε, we have;
61.4 × 10^(9) = (52900/0.00009216π) ÷ (ΔL/0.207)
Making ΔL the subject, we have;
ΔL = (52900 × 0.207)/(61.4 × 10^(9) × 0.00009216π)
ΔL = 0.616 × 10^(-3) m
ΔL = 0.616 mm
B) Poisson's ratio is given as;
υ = ε_x/ε_z
ε_x = Δd/d_o
ε_z = ΔL/L_o
Thus;
υ = (Δd/d_o) ÷ (ΔL/L_o)
Making Δd the subject gives;
Δd = (υ × d_o × ΔL)/L_o
We are given Poisson's ratio to be 0.34.
Thus;
Δd = (0.34 × 19.2 × 0.616)/207
Δd = 0.00194 mm
A gas stream contains 18.0 mole% hexane and the remainder nitrogen. The stream flows to a condenser, where its temperature is reduced and some of the hexane is liquefied. The hexane mole fraction in the gas stream leaving the condenser is 0.0500. Liquid hexane condensate is recovered at a rate of 1.50 L/min.
(a) What is the flow rate of the gas stream leaving the condenser in mol/min? (Hint : First calculate the molar flow rate of the condensate and note that the rates at which C6H14 and N2 enter the unit must equal the total rates at which they leave in the two exit streams.)
(b) What percentage of the hexane entering the condenser is recovered as a liquid?
Answer:
A. 72.34mol/min
B. 76.0%
Explanation:
A.
We start by converting to molar flow rate. Using density and molecular weight of hexane
= 1.59L/min x 0.659g/cm³ x 1000cm³/L x 1/86.17
= 988.5/86.17
= 11.47mol/min
n1 = n2+n3
n1 = n2 + 11.47mol/min
We have a balance on hexane
n1y1C6H14 = n2y2C6H14 + n3y3C6H14
n1(0.18) = n2(0.05) + 11.47(1.00)
To get n2
(n2+11.47mol/min)0.18 = n2(0.05) + 11.47mol/min(1.00)
0.18n2 + 2.0646 = 0.05n2 + 11.47mol/min
0.18n2-0.05n2 = 11.47-2.0646
= 0.13n2 = 9.4054
n2 = 9.4054/0.13
n2 = 72.34 mol/min
This value is the flow rate of gas that is leaving the system.
B.
n1 = n2 + 11.47mol/min
72.34mol/min + 11.47mol/min
= 83.81 mol/min
Amount of hexane entering condenser
0.18(83.81)
= 15.1 mol/min
Then the percentage condensed =
11.47/15.1
= 7.59
~7.6
7.6x100
= 76.0%
Therefore the answers are a.) 72.34mol/min b.) 76.0%
Please refer to the attachment .
A cylinder 10 mm in diameter is pulled with a stress of 150 MPa. The diameter elastically decreased by 0.007 mm. Determine Poisson's ratio if the material has a elastic modulus of 100 GPa.
Answer:Poisson's Ratio,μ = 0.46
Explanation:
Poisson's Ratio is calculate as
μ = transverse/ longitudinal strain
μ = - εt / εl
where
μ = Poisson's ratio
εt = transverse strain
εl = longitudinal strain
Transverse strain can be expressed as
εt = change in diameter / initial diameter
where
εt =transverse strain
change in diameter=0.007mm
initial diameter = 10mm
εt =0.007mm/ 10mm= 0.0007
Longitudinal strain can be expressed as
εl=Stress/ elastic modulus = σ/ E
= Stress = 150 MPa , converting to GPa becomes 150/1000 = 0.15 GPa
εl= 0.15 GPa / 100 GPa= 0.0015
Poisson's Ratio,μ = transverse/ longitudinal strain
( 0.0007 /0.0015) = 0.46 =0.46
A tube of diameter 3 cm and length 3 m has a water flow of 100 cm3/s. If the pollutant concentration in the water is constant at 2 mg/L, find the mass flux (mg/cm2-s) of pollutant through the tube due to advection.
Answer: the mass flux of pollutant through the tube due to advection is 0.0283 mg/cm².s
Explanation:
Given that;
Diameter of tube = 3 cm, radius r = 1.5 cm
water flow is 100 cm³/s
pollutant concentration = 2 mg/L
first we find the rate of flow of pollutant
we know that
1 L = 1000 cm³
xL = 100 cm³
100Lcm³ = xL1000cm³
xL = 100/1000
xL = 1/10 L
so 100cm³ = 1/10 L
now pollutant concentration in 100 cm³ = 1/10L × 2mg/L = 0.2 mg
Rate of flow of pollutant = 0.2 mg/s
Mass flux density is the pollutant mass per unit time per unit area
so Area of tube = πr² = 3.14 × 1.5² = 7.065 cm²
So
Mass flux = 0.2 / 7.065
Mass flux = 0.0283 mg/cm².s
Therefore, the mass flux of pollutant through the tube due to advection is 0.0283 mg/cm².s
Saturated water vapor at 150°C is compressed in a reversible steady-flow device to 1000 kPa while its specific volume remains constant. Determine the work required in kJ/kg.
Answer:
work required = 205.59 kJ/kg
Explanation:
Given data:
Temperature of water vapor = 150°c
final pressure ( P2 ) = 1000 kPa
specific volume = constant
Determine work required in kJ/kg
we apply the equation below to resolve the problem
[tex]w_{rev} = v ( P1 - P2 )[/tex] ---- ( 1 )
next we have to find the value of the specific volume and saturation pressure of water vapor at 150°c using the saturated water-temperature table
v = specific volume = 0.39248 m^3/kg
P1 = saturation pressure = 476.16 kPa
substitute values into equation 1
[tex]w_{rev} =[/tex] 0.39248 ( 476.16 - 1000 )
= -205.59 kj/kg
hence work required = 205.59 kJ/kg
The seers were of the opinion that_____ . *
a healthy mind guides a healthy body.
the healthy body needs no exercise.
a healthy mind resides in a healthy body.
the healthy mind resides in every body.
Answer:
✔️a healthy mind resides in a healthy body.
Explanation:
The seers were of the opinion that "a healthy mind resides in a healthy body."
Just like the English translation of a famous quotation from Thales, pre-Socratic Greek philosopher puts it "a sound mind in a sound body"; which tries to demonstrate the close connections that exists in bodily well-being and one's ability to enjoy life.
The seers were actually of the opinion that a healthy mind resides in a healthy body. It implies that there is connection between the body and the mind. When the body catches an illness, the mind and other parts of the body are affected. When our minds are not healthy, it affects the effective functioning of the body.
So, a healthy mind will definitely be found in a healthy body.
✔️a healthy mind resides in a healthy body.
Explanation:
The seers were of the opinion that "a healthy mind resides in a healthy body."
Just like the English translation of a famous quotation from Thales, pre-Socratic Greek philosopher puts it "a sound mind in a sound body"; which tries to demonstrate the close connections that exists in bodily well-being and one's ability to enjoy life.
The seers were actually of the opinion that a healthy mind resides in a healthy body. It implies that there is connection between the body and the mind. When the body catches an illness, the mind and other parts of the body are affected. When our minds are not healthy, it affects the effective functioning of the body.
So, a healthy mind will definitely be found in a healthy body.
Which of the following is an example of a tax
Answer:
A tax is a monetary payment without the right to individual consideration, which a public law imposes on all taxable persons - including both natural and legal persons - in order to generate income. This means that taxes are public-law levies that everyone must pay to cover general financial needs who meet the criteria of tax liability, whereby the generation of income should at least be an auxiliary purpose. Taxes are usually the main source of income of a modern state. Due to the financial implications for all citizens and the complex tax legislation, taxes and other charges are an ongoing political and social issue.
I dont know I asked this to
Explanation: